22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Natural killer cell specificity for viral infections

      , ,
      Nature Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

          The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.

            Metazoan organisms may discriminate between self and non-self not only by the presence of foreign antigens but also by the absence of normal self markers. Mammalian adaptive immune responses use the first strategy, with the additional requirement that foreign antigens are recognized in the context of self-major histocompatibility complex (MHC) products at the cell surface. Aberrant cells which fail to express MHC products adequately can therefore avoid detection. A more primitive but complementary defence system, eliminating such cells on the basis of absent self-markers, is suggested by a re-interpretation of phenomena associated with metastasis and natural resistance. We now show that murine lymphoma cells selected for loss of H-2 expression are less malignant after low-dose inoculation in syngeneic hosts than are wild-type cells, and that the rejection of such cells is non-adaptive. On the basis of our data, we suggest that natural killer cells are effector cells in a defence system geared to detect the deleted or reduced expression of self-MHC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function.

              The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.
                Bookmark

                Author and article information

                Journal
                Nature Immunology
                Nat Immunol
                Springer Nature
                1529-2908
                1529-2916
                August 2018
                July 19 2018
                August 2018
                : 19
                : 8
                : 800-808
                Article
                10.1038/s41590-018-0163-6
                30026479
                a59e5205-87f9-416b-85d9-f548af72362c
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article