23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential and Challenges of Improving Photosynthesis in Algae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sunlight energy largely exceeds the energy required by anthropic activities, and therefore its exploitation represents a major target in the field of renewable energies. The interest in the mass cultivation of green microalgae has grown in the last decades, as algal biomass could be employed to cover a significant portion of global energy demand. Advantages of microalgal vs. plant biomass production include higher light-use efficiency, efficient carbon capture and the valorization of marginal lands and wastewaters. Realization of this potential requires a decrease of the current production costs, which can be obtained by increasing the productivity of the most common industrial strains, by the identification of factors limiting biomass yield, and by removing bottlenecks, namely through domestication strategies aimed to fill the gap between the theoretical and real productivity of algal cultures. In particular, the light-to-biomass conversion efficiency represents one of the major constraints for achieving a significant improvement of algal cell lines. This review outlines the molecular events of photosynthesis, which regulate the conversion of light into biomass, and discusses how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. This review highlights the most recent results in the manipulation of the fundamental mechanisms of algal photosynthesis, which revealed that a significant yield enhancement is feasible. Moreover, metabolic engineering of microalgae, focused upon the development of renewable fuel biorefineries, has also drawn attention and resulted in efforts for enhancing productivity of oil or isoprenoids.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Photosynthetic energy conversion: natural and artificial.

          Photosystem II (PSII) is the water splitting enzyme of photosynthesis. Its appearance during evolution dramatically changed the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. Powered by sunlight, PSII supplies biology with the 'hydrogen' needed to convert carbon dioxide into organic molecules. The questions now are can we continue to exploit this photosynthetic process through increased use of biomass as an energy source and, more importantly, can we address the energy/CO2 problem by developing new photochemical technologies which mimic the natural system? (Critical review, 82 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A pigment-binding protein essential for regulation of photosynthetic light harvesting.

            Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis. These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              REGULATION OF LIGHT HARVESTING IN GREEN PLANTS.

              When plants are exposed to light intensities in excess of those that can be utilized in photosynthetic electron transport, nonphotochemical dissipation of excitation energy is induced as a mechanism for photoprotection of photosystem II. The features of this process are reviewed, particularly with respect to the molecular mechanisms involved. It is shown how the dynamic properties of the proteins and pigments of the chlorophyll a/b light-harvesting complexes of photosystem II first enable the level of excitation energy to be sensed via the thylakoid proton gradient and subsequently allow excess energy to be dissipated as heat by formation of a nonphotochemical quencher. The nature of this quencher is discussed, together with a consideration of how the variation in capacity for energy dissipation depends on specific features of the composition of the light-harvesting system. Finally, the prospects for future progress in understanding the regulation of light harvesting are assessed.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                03 January 2020
                January 2020
                : 9
                : 1
                : 67
                Affiliations
                Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; valeria.vecchi@ 123456univr.it (V.V.); Simone.barera@ 123456univr.it (S.B.); roberto.bassi55@ 123456gmail.com (R.B.)
                Author notes
                [* ]Correspondence: luca.dallosto@ 123456univr.it ; Tel.: +39-045-8027806; Fax: +39-045-8027929
                [†]

                These authors contributed equally to this work.

                Article
                plants-09-00067
                10.3390/plants9010067
                7020468
                31947868
                a57531f0-e829-4331-8481-a901dc4a18b4
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 November 2019
                : 30 December 2019
                Categories
                Review

                photosynthesis,microalgae,biomass productivity,npq,light-harvesting,complex psii,rubisco,renewable energies,strain domestication

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content242

                Cited by43

                Most referenced authors2,319