15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Motion of charged particle in Reissner–Nordström spacetime: a Jacobi-metric approach

      , ,
      The European Physical Journal C
      Springer Nature

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry

          We consider a triality between the Zermelo navigation problem, the geodesic flow on a Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a timelike conformal Killing vector field. From the latter viewpoint, the data of the Zermelo problem are encoded in a (conformally) Painleve-Gullstrand form of the spacetime metric, whereas the data of the Randers problem are encoded in a stationary generalisation of the usual optical metric. We discuss how the spacetime viewpoint gives a simple and physical perspective on various issues, including how Finsler geometries with constant flag curvature always map to conformally flat spacetimes and that the Finsler condition maps to either a causality condition or it breaks down at an ergo-surface in the spacetime picture. The gauge equivalence in this network of relations is considered as well as the connection to analogue models and the viewpoint of magnetic flows. We provide a variety of examples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Motion of charged test particles in Reissner--Nordstr\"om spacetime

            We investigate the circular motion of charged test particles in the gravitational field of a charged mass described by the Reissner-Nordstr\"om (RN) spacetime. We study in detail all the spatial regions where circular motion is allowed around either black holes or naked singularities. The effects of repulsive gravity are discussed by finding all the circles at which a particle can have vanishing angular momentum. We show that the geometric structure of stable accretion disks, made of only test particles moving along circular orbits around the central body, allows us to clearly distinguish between black holes and naked singularities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Applications of the Gauss-Bonnet theorem to gravitational lensing

              In this geometrical approach to gravitational lensing theory, we apply the Gauss-Bonnet theorem to the optical metric of a lens, modelled as a static, spherically symmetric, perfect non-relativistic fluid, in the weak deflection limit. We find that the focusing of the light rays emerges here as a topological effect, and we introduce a new method to calculate the deflection angle from the Gaussian curvature of the optical metric. As examples, the Schwarzschild lens, the Plummer sphere and the singular isothermal sphere are discussed within this framework.
                Bookmark

                Author and article information

                Journal
                The European Physical Journal C
                Eur. Phys. J. C
                Springer Nature
                1434-6044
                1434-6052
                November 2017
                November 3 2017
                November 2017
                : 77
                : 11
                Article
                10.1140/epjc/s10052-017-5295-6
                a4af6a2d-01c0-41f3-8e86-072dcb1ff2f2
                © 2017

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article