20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tetrapyrrole‐based drought stress signalling

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Tetrapyrroles such as chlorophyll and heme play a vital role in primary plant metabolic processes such as photosynthesis and respiration. Over the past decades, extensive genetic and molecular analyses have provided valuable insights into the complex regulatory network of the tetrapyrrole biosynthesis. However, tetrapyrroles are also implicated in abiotic stress tolerance, although the mechanisms are largely unknown. With recent reports demonstrating that modified tetrapyrrole biosynthesis in plants confers wilting avoidance, a component physiological trait to drought tolerance, it is now timely that this pathway be reviewed in the context of drought stress signalling. In this review, the significance of tetrapyrrole biosynthesis under drought stress is addressed, with particular emphasis on the inter‐relationships with major stress signalling cascades driven by reactive oxygen species ( ROS) and organellar retrograde signalling. We propose that unlike the chlorophyll branch, the heme branch of the pathway plays a key role in mediating intracellular drought stress signalling and stimulating ROS detoxification under drought stress. Determining how the tetrapyrrole biosynthetic pathway is involved in stress signalling provides an opportunity to identify gene targets for engineering drought‐tolerant crops.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

          Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

            Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene networks involved in drought stress response and tolerance.

              Plants respond to survive under water-deficit conditions via a series of physiological, cellular, and molecular processes culminating in stress tolerance. Many drought-inducible genes with various functions have been identified by molecular and genomic analyses in Arabidopsis, rice, and other plants, including a number of transcription factors that regulate stress-inducible gene expression. The products of stress-inducible genes function both in the initial stress response and in establishing plant stress tolerance. In this short review, recent progress resulting from analysis of gene expression during the drought-stress response in plants as well as in elucidating the functions of genes implicated in the stress response and/or stress tolerance are summarized. A description is also provided of how various genes involved in stress tolerance were applied in genetic engineering of dehydration stress tolerance in transgenic Arabidopsis plants.
                Bookmark

                Author and article information

                Contributors
                ryan.whitford@acpfg.com.au
                Journal
                Plant Biotechnol J
                Plant Biotechnol. J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                10 March 2015
                May 2015
                : 13
                : 4 ( doiID: 10.1111/pbi.2015.13.issue-4 )
                : 447-459
                Affiliations
                [ 1 ] Australian Centre for Plant Functional Genomics School of Agriculture, Food and WineUniversity of Adelaide Glen Osmond SAAustralia
                Author notes
                [*] [* ] Correspondence (Tel +61 88313 7171; fax +61 88313 7102; email ryan.whitford@ 123456acpfg.com.au )
                Article
                PBI12356
                10.1111/pbi.12356
                5054908
                25756609
                a33fff2a-0321-4f63-a6a6-eb76938e1731
                © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 28 January 2014
                : 05 January 2015
                : 31 January 2015
                Page count
                Figures: 2, Tables: 0, Pages: 13, Words: 13260
                Funding
                Funded by: Australian Research Council
                Funded by: Grains Research and Development Corporation
                Funded by: Government of South Australia
                Funded by: University of Adelaide
                Categories
                Review Article
                Review Article
                Custom metadata
                2.0
                pbi12356
                May 2015
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:07.10.2016

                Biotechnology
                tetrapyrrole,reactive oxygen species,chlorophyll,heme,drought stress signalling
                Biotechnology
                tetrapyrrole, reactive oxygen species, chlorophyll, heme, drought stress signalling

                Comments

                Comment on this article