0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Plant Defensin Ppdef1 Is a Novel Topical Treatment for Onychomycosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Electrostatics of nanosystems: application to microtubules and the ribosome.

          Evaluation of the electrostatic properties of biomolecules has become a standard practice in molecular biophysics. Foremost among the models used to elucidate the electrostatic potential is the Poisson-Boltzmann equation; however, existing methods for solving this equation have limited the scope of accurate electrostatic calculations to relatively small biomolecular systems. Here we present the application of numerical methods to enable the trivially parallel solution of the Poisson-Boltzmann equation for supramolecular structures that are orders of magnitude larger in size. As a demonstration of this methodology, electrostatic potentials have been calculated for large microtubule and ribosome structures. The results point to the likely role of electrostatics in a variety of activities of these structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations.

            Continuum solvation models, such as Poisson-Boltzmann and Generalized Born methods, have become increasingly popular tools for investigating the influence of electrostatics on biomolecular structure, energetics and dynamics. However, the use of such methods requires accurate and complete structural data as well as force field parameters such as atomic charges and radii. Unfortunately, the limiting step in continuum electrostatics calculations is often the addition of missing atomic coordinates to molecular structures from the Protein Data Bank and the assignment of parameters to biomolecular structures. To address this problem, we have developed the PDB2PQR web service (http://agave.wustl.edu/pdb2pqr/). This server automates many of the common tasks of preparing structures for continuum electrostatics calculations, including adding a limited number of missing heavy atoms to biomolecular structures, estimating titration states and protonating biomolecules in a manner consistent with favorable hydrogen bonding, assigning charge and radius parameters from a variety of force fields, and finally generating 'PQR' output compatible with several popular computational biology packages. This service is intended to facilitate the setup and execution of electrostatics calculations for both experts and non-experts and thereby broaden the accessibility to the biological community of continuum electrostatics analyses of biomolecular systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial host defence peptides: functions and clinical potential

              Cationic host defence peptides (CHDP), also known as antimicrobial peptides, are naturally occurring peptides that can combat infections through their direct microbicidal properties and/or by influencing the host's immune responses. The unique ability of CHDP to control infections as well as resolve harmful inflammation has generated interest in harnessing the properties of these peptides to develop new therapies for infectious diseases, chronic inflammatory disorders and wound healing. Various strategies have been used to design synthetic optimized peptides, with negligible toxicity. Here, we focus on the progress made in understanding the scope of functions of CHDP and the emerging potential clinical applications of CHDP-based therapies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JFOUCU
                Journal of Fungi
                JoF
                MDPI AG
                2309-608X
                November 2023
                November 17 2023
                : 9
                : 11
                : 1111
                Article
                10.3390/jof9111111
                a2a10704-faa0-47b0-b15a-16f3a41f6e96
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article