6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of Wearable PDMS Device for Rapid Detection of Nucleic Acids via Recombinase Polymerase Amplification Operated by Human Body Heat

      ,
      Biosensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pathogen detection by nucleic acid amplification proved its significance during the current coronavirus disease 2019 (COVID-19) pandemic. The emergence of recombinase polymerase amplification (RPA) has enabled nucleic acid amplification in limited-resource conditions owing to the low operating temperatures around the human body. In this study, we fabricated a wearable RPA microdevice using poly(dimethylsiloxane) (PDMS), which can form soft—but tight—contact with human skin without external support during the body-heat-based reaction process. In particular, the curing agent ratio of PDMS was tuned to improve the flexibility and adhesion of the device for better contact with human skin, as well as to temporally bond the microdevice without requiring further surface modification steps. For PDMS characterization, water contact angle measurements and tests for flexibility, stretchability, bond strength, comfortability, and bendability were conducted to confirm the surface properties of the different mixing ratios of PDMS. By using human body heat, the wearable RPA microdevices were successfully applied to amplify 210 bp from Escherichia coli O157:H7 (E. coli O157:H7) and 203 bp from the DNA plasmid SARS-CoV-2 within 23 min. The limit of detection (LOD) was approximately 500 pg/reaction for genomic DNA template (E. coli O157:H7), and 600 fg/reaction for plasmid DNA template (SARS-CoV-2), based on gel electrophoresis. The wearable RPA microdevice could have a high impact on DNA amplification in instrument-free and resource-limited settings.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Real-time RT-PCR in COVID-19 detection: issues affecting the results

          Due to the rapid spread and increasing number of coronavirus disease 19 (COVID-19) cases caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapid and accurate detection of virus and/or disease is increasingly vital to control the sources of infection and help patients to prevent the illness progression. Since December 2019, there has been considerable challenge regarding the use of nucleic acid test or clinical characteristics of infected patients as the reference standard to make a definitive diagnose of COVID-19 patients. As the early diagnosis of COVID-19 is critical for prevention and control of this pandemic, clinical characteristics cannot alone define the diagnosis of COVID-19, especially for patients presenting early-onset of symptoms. Along with the advancement in medical diagnosis, nucleic acid detection-based approaches have become a rapid and reliable technology for viral detection. Among nucleic acid tests, the polymerase chain reaction (PCR) method is considered as the ‘gold standard’ for the detection of some viruses and is characterized by rapid detection, high sensitivity, and specificity. As such, real-time reverse transcriptase-PCR (RT-PCR) is of great interest today for the detection of SARS-CoV-2 due to its benefits as a specific and simple qualitative assay [1–3]. Moreover, real-time RT-PCR has adequate sensitivity to help us much for diagnosing early infection. Therefore, the ‘criterion-referenced’ real-time RT-PCR assay can be considered as a main method to be applied to detect the causative agent of COVID-19, SARS-CoV-2. An important issue with the real-time RT-PCR test is the risk of eliciting false-negative and false-positive results. It is reported that many ‘suspected’ cases with typical clinical characteristics of COVID-19 and identical specific computed tomography (CT) images were not diagnosed [4]. Thus, a negative result does not exclude the possibility of COVID-19 infection and should not be used as the only criterion for treatment or patient management decisions. It seems that combination of real-time RT-PCR and clinical features facilitates management of SARS-CoV-2 outbreak. Several factors have been proposed to be associated with the inconsistency of real-time RT-PCR [5]. In the following, we attempt to discuss various challenges regarding the detection of SARS-CoV-2 by real-time RT-PCR. It is expected that this could provide beneficial information for the comprehension of the limitations of the obtained results and to improve diagnosis approaches and control of the disease. It is well known that results from real-time RT-PCR using primers in different genes can be affected by the variation of viral RNA sequences. Genetic diversity and rapid evolution of this novel coronavirus have been observed in different studies [6,7]. False-negative results may occur by mutations in the primer and probe target regions in the SARS-CoV-2 genome. Although it was attempted to design the real-time RT-PCR assay as precisely as possible based on the conserved regions of the viral genomes, variability causing mismatches between the primers and probes and the target sequences can lead to decrease in assay performance and potential false-negative results. In this regard, multiple target gene amplification could be used to avoid invalid results. Several types of SARS-CoV-2 real-time RT-PCR kit have been developed and approved rapidly, but with different quality. Importantly, the sensitivity and specificity of the real-time RT-PCR test is not 100%. All of them behind the laboratory practice standard and personnel skill in the relevant technical and safety procedures explain some of the false-negative results. According to the natural history of the COVID-19 and viral load kinetics in different anatomic sites of the patients, sampling procedures largely contribute to the false-negative results. Optimum sample types and timing for peak viral load during infections caused by SARS-CoV-2 remain to be fully determined. A study has reported sputum as the most accurate sample for laboratory diagnosis of COVID-19, followed by nasal swabs, while throat swabs were not recommended for the diagnosis [8]. They also suggested the detection of viral RNAs in bronchoalveolar lavage fluid (BALF) for the diagnosis and monitoring of viruses in severe cases. However, gathering of BALF needs both a suction tool and an expert operator, in addition to being painful to the patients. While BALF samples are not practical for the routine laboratory diagnosis and monitoring of the disease, collection of other samples such as sputum, nasal swab, and throat swab is rapid, simple, and safe. To avoid inconsistent results, it would be better to use different specimen types (stool and blood) besides respiratory specimen during different stages. It is worth noting that samples should be obtained by dacron or polyester flocked swabs and should reach the laboratory as soon as possible after collection. False-negative results may occur due to the presence of amplification inhibitors in the sample or insufficient organisms in the sample rising from inappropriate collection, transportation, or handling. Viral load kinetics of SARS-CoV-2 infection have been described in two patients in Korea, suggesting a different viral load kinetics from that of previously reported other coronavirus infections [9]. In the first patient, the virus was detected from upper respiratory tract (URT) and lower respiratory tract (LRT) specimens on days 2 and 3 of symptom onset, respectively. On day 5, the viral load was increased from day 3 in the LRT specimen. However, the viral loads decreased from around day 7 in both URT and LRT specimens. Real-time RT-PCR continued to be positive at a low level until day 13 (LRT specimens) and day 14 (URT specimens). Finally, the assay became undetectable for two consecutive days from day 14 (LRT specimen) and day 15 (URT specimen), respectively. In the second patient, SARS-CoV-2 was detected in both URT and LRT specimens on day 14 of symptom onset. However, the initial viral loads were relatively lower than those of patient 1 in whom the test was performed on day 2 of symptom onset. From day 18 (URT specimen) and day 20 (LRT specimen), real-time RT-PCR became undetectable for two consecutive days, respectively. URT sample of day 25 was again positive for RdRp and E genes. However, it was interpreted as negative due to high Ct value of the RdRp gene (Ct value of 36.69). These findings indicate the different viral load kinetics of SARS-coV-2 in different patients, suggesting that sampling timing and period of the disease development play an important role in real-time RT-PCR results. Finally, the Centers for Disease Control and Prevention (CDC) has designed a SARS-CoV-2 Real-Time RT-PCR Diagnostic Panel to minimize the chance of false-positive results [10]. In accordance, the negative template control (NTC) sample should be negative, showing no fluorescence growth curves that cross the threshold line. The occurrence of false positive with one or more of the primer and probe NTC reactions is indicative of sample contamination. Importantly, the internal control should be included to help identify the specimens containing substances that may interfere with the extraction of nucleic acid and PCR amplification. Because of the several risks to patients in the event of a false-positive result, all clinical laboratories using this test must follow the standard confirmatory testing and reporting guidelines based on their proper public health authorities. 1. Expert opinion In conclusion, according to the mentioned reasons, the results of real-time RT-PCR tests must be cautiously interpreted. In the case of real-time RT-PCR negative result with clinical features suspicion for COVID-19, especially when only upper respiratory tract samples were tested, multiple sample types in different time points, including from the lower respiratory tract if possible, should be tested. Importantly, combination of real-time RT-PCR and clinical features especially CT image could facilitate disease management. Proper sampling procedures, good laboratory practice standard, and using high-quality extraction and real-time RT-PCR kit could improve the approach and reduce inaccurate results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances and perspectives of nucleic acid detection for coronavirus

            The recent pneumonia outbreak caused by a novel coronavirus (SARS-CoV-2) in Chinais posing a great threat to global public health. Therefore, rapid and a accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people’s lives and preventing epidemics. It is important to establish a quick standard diagnostic test for the detection of the infectious disease (COVID-19) to prevent subsequent secondary spread. Polymerase chain reaction (PCR) is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity. Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler operation. A variety of improved or new approaches also have been developed. This review summarizes the currently available detection methods for coronavirus nucleic acid. It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coronavirus infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinase polymerase amplification: Basics, applications and recent advances

              Recombinase polymerase amplification (RPA) is a highly sensitive and selective isothermal amplification technique, operating at 37–42°C, with minimal sample preparation and capable of amplifying as low as 1–10 DNA target copies in less than 20 min. It has been used to amplify diverse targets, including RNA, miRNA, ssDNA and dsDNA from a wide variety of organisms and samples. An ever increasing number of publications detailing the use of RPA are appearing and amplification has been carried out in solution phase, solid phase as well as in a bridge amplification format. Furthermore, RPA has been successfully integrated with different detection strategies, from end-point lateral flow strips to real-time fluorescent detection amongst others. This review focuses on the different methodologies and advances related to RPA technology, as well as highlighting some of the advantages and drawbacks of the technique.
                Bookmark

                Author and article information

                Contributors
                Journal
                BIOSHU
                Biosensors
                Biosensors
                MDPI AG
                2079-6374
                February 2022
                January 27 2022
                : 12
                : 2
                : 72
                Article
                10.3390/bios12020072
                35200333
                a18898f9-b46d-4b71-8716-6c2416da3a7b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article