5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals

      1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
      JAMA
      American Medical Association (AMA)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Importance

          Many medical journals, including JAMA, restrict the use of causal language to the reporting of randomized clinical trials. Although well-conducted randomized clinical trials remain the preferred approach for answering causal questions, methods for observational studies have advanced such that causal interpretations of the results of well-conducted observational studies may be possible when strong assumptions hold. Furthermore, observational studies may be the only practical source of information for answering some questions about the causal effects of medical or policy interventions, can support the study of interventions in populations and settings that reflect practice, and can help identify interventions for further experimental investigation. Identifying opportunities for the appropriate use of causal language when describing observational studies is important for communication in medical journals.

          Observations

          A structured approach to whether and how causal language may be used when describing observational studies would enhance the communication of research goals, support the assessment of assumptions and design and analytic choices, and allow for more clear and accurate interpretation of results. Building on the extensive literature on causal inference across diverse disciplines, we suggest a framework for observational studies that aim to provide evidence about the causal effects of interventions based on 6 core questions: what is the causal question; what quantity would, if known, answer the causal question; what is the study design; what causal assumptions are being made; how can the observed data be used to answer the causal question in principle and in practice; and is a causal interpretation of the analyses tenable?

          Conclusions and Relevance

          Adoption of the proposed framework to identify when causal interpretation is appropriate in observational studies promises to facilitate better communication between authors, reviewers, editors, and readers. Practical implementation will require cooperation between editors, authors, and reviewers to operationalize the framework and evaluate its effect on the reporting of empirical research.

          Related collections

          Most cited references192

          • Record: found
          • Abstract: found
          • Article: not found

          An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies

          The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing score: conditional on the propensity score, the distribution of observed baseline covariates will be similar between treated and untreated subjects. I describe 4 different propensity score methods: matching on the propensity score, stratification on the propensity score, inverse probability of treatment weighting using the propensity score, and covariate adjustment using the propensity score. I describe balance diagnostics for examining whether the propensity score model has been adequately specified. Furthermore, I discuss differences between regression-based methods and propensity score-based methods for the analysis of observational data. I describe different causal average treatment effects and their relationship with propensity score analyses.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The central role of the propensity score in observational studies for causal effects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensitivity Analysis in Observational Research: Introducing the E-Value.

              Sensitivity analysis is useful in assessing how robust an association is to potential unmeasured or uncontrolled confounding. This article introduces a new measure called the "E-value," which is related to the evidence for causality in observational studies that are potentially subject to confounding. The E-value is defined as the minimum strength of association, on the risk ratio scale, that an unmeasured confounder would need to have with both the treatment and the outcome to fully explain away a specific treatment-outcome association, conditional on the measured covariates. A large E-value implies that considerable unmeasured confounding would be needed to explain away an effect estimate. A small E-value implies little unmeasured confounding would be needed to explain away an effect estimate. The authors propose that in all observational studies intended to produce evidence for causality, the E-value be reported or some other sensitivity analysis be used. They suggest calculating the E-value for both the observed association estimate (after adjustments for measured confounders) and the limit of the confidence interval closest to the null. If this were to become standard practice, the ability of the scientific community to assess evidence from observational studies would improve considerably, and ultimately, science would be strengthened.
                Bookmark

                Author and article information

                Journal
                JAMA
                JAMA
                American Medical Association (AMA)
                0098-7484
                May 09 2024
                Affiliations
                [1 ]CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
                [2 ]Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
                [3 ]Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
                [4 ]Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
                [5 ]Statistical Editor, JAMA
                [6 ]Department of Medicine, University of California, San Francisco
                [7 ]Department of Epidemiology and Biostatistics, University of California, San Francisco
                [8 ]Editor in Chief, JAMA and JAMA Network
                Article
                10.1001/jama.2024.7741
                38722735
                a119c3e0-01b5-431c-8c90-b4344410ac3d
                © 2024
                History

                Comments

                Comment on this article