7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, Italy)

      ,
      Land
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agricultural land is a very important ecosystem that provides a range of services like food, maintenance of soil structure, and hydrological services with high ecological value to human wellbeing Ecosystem Services (ESs). Understanding the contribution of different agricultural practices to supply ESs would help inform choices about the most beneficial land use management. Nature-based Solutions (NbS) are defined by IUCN (International Union for Conservation of Nature) as actions to protect, sustainably manage and restore natural or modified ecosystems, which address societal challenges (e.g., climate change, food and water security, or natural disasters) effectively and adaptively, while simultaneously providing human wellbeing and biodiversity benefits. Some actions farmers can implement in the new Rural Development Programs (RDP 2021–2022 and 2023–2027) can be considered as NbS and could affect the quantity, quality, and time of some ESs related to water regulation and supply, N adsorption and erosion protection. This study aims to evaluate these ESs in different scenarios in the upper Foglia river basin (Italy) and at a local scale (farming), and to highlight the issue to compensate farmers for the production of public goods which benefit the whole society (ESs) by the implementation of RDP’s actions. These scenarios highlight how actions have positive effects on ecosystem services and their economic value related to land use management, on maintaining agricultural practices by integrating Water Frame Directive (2000/60/EC), Directive 2007/60/EC on the management of flood risks and highlighting the potential role of farmers in a high diversity landscape. This study highlights a new way to evaluate the processes of natural capital in the production of public goods, which benefits the whole society (ESs), by emphasizing the economic and environmental role of farmers in producing them and putting on the table data to trigger a PES (Payment for Ecosystem Services) mechanism. To facilitate decision making, robust decision support tools are needed, underpinned by comprehensive cost-benefit analyses and spatially modeling in which agriculture can be a strategic sector to optimize food production and environmental protection in harmony with the Farm to Fork (F2F) strategy.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          The value of the world's ecosystem services and natural capital

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Agricultural sustainability and intensive production practices.

            A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

              The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
                Bookmark

                Author and article information

                Contributors
                Journal
                Land
                Land
                MDPI AG
                2073-445X
                January 2022
                December 31 2021
                : 11
                : 1
                : 57
                Article
                10.3390/land11010057
                9ffc6b1b-5ea8-43e1-9c91-0bb0366ee2c0
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article