9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We focused on preparing cellulose nanofibrils by purification, separation, and mechanical treatment of Kombucha membranes (KM) resulted as secondary product from beverage production by fermentation of tea broth with symbiotic culture of bacteria and yeast (SCOBY). We purified KM using two alkaline solutions, 1 and 4 M NaOH, which afterwards were subjected to various mechanical treatments. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to evaluate the purification degree, the size and aspect of cellulose fibrils after each treatment step, the physical-chemical properties of intermediary and final product, and for comparison with micro-crystalline cellulose from wooden sources. We determined that 1 M NaOH solution leads to approx. 85% purification, while a higher concentration assures almost 97% impurities removal. XRD analysis evidenced an increase in crystallinity from 37% to 87% after purification, the characteristic diffractograms of Iα and Iβ cellulose allomorphs, and a further decrease in crystallinity to 46% after microfluidization, fact correlated with a drastically decrease in fibrils’ size. FTIR analysis evidenced the appearance of new chain ends by specific transmission bands at 2941 and 2843 cm −1.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance

          Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

            With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanocellulose, a tiny fiber with huge applications.

              Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering due to its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. We discuss the main areas of nanocellulose research: photonics, films and foams, surface modifications, nanocomposites, and medical devices. These tiny nanocellulose fibers have huge potential in many applications, from flexible optoelectronics to scaffolds for tissue regeneration. We hope to impart the readers with some of the excitement that currently surrounds nanocellulose research, which arises from the green nature of the particles, their fascinating physical and chemical properties, and the diversity of applications that can be impacted by this material.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                18 August 2017
                August 2017
                : 9
                : 8
                : 374
                Affiliations
                [1 ]INCDCP ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania; phd.Ovidiu.Dima@ 123456gmail.com (S.-O.D.); Panaitescu@ 123456icf.ro (D.-M.P.); Ghiurea@ 123456gmail.com (M.G.); SandaMariaDoncea@ 123456gmail.com (S.-M.D.); Radu_Claudiu_Fierascu@ 123456yahoo.com (R.C.F.); LC_Nistor@ 123456yahoo.com (C.L.N.); ElviraAlexandrescu@ 123456yahoo.com (E.A.); CA_Nicolae@ 123456yahoo.com (C.-A.N.); Trica.Bogdan@ 123456gmail.com (B.T.)
                [2 ]S.C. Corax Bioner CEU S.A., 53 Sarkadi Elek, Miercurea Ciuc 530200, Romania; csopont@ 123456gmail.com
                [3 ]S.C. Laboratoarele Medica Srl, 11 Frasinului Str., Otopeni 075100, Romania; Angela.Moraru@ 123456medicagroup.ro
                Author notes
                [* ]Correspondence: Florin.Oancea@ 123456icechim.ro ; Tel.: +40-21-315-3299
                Author information
                https://orcid.org/0000-0003-3015-9445
                https://orcid.org/0000-0002-9200-5807
                https://orcid.org/0000-0002-7723-1814
                Article
                polymers-09-00374
                10.3390/polym9080374
                6418918
                30971046
                9f93d742-f476-4a56-886f-0180e8452b52
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 July 2017
                : 14 August 2017
                Categories
                Article

                nanocellulose,kombucha membranes,spray-drying,microfluidization,bacterial nanofibrils

                Comments

                Comment on this article