13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections

      review-article
      NPJ Vaccines
      Nature Publishing Group UK
      Bacterial infection, Vaccines

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A crisis in bacterial infections looms as ageing populations, increasing rates of bacteraemia and healthcare-associated infections converge with increasing antimicrobial resistance and a paucity of new antimicrobial classes. New initiatives are needed to develop bacterial vaccines for older adults in whom immune senescence plays a critical role. Novel vaccines require an expanded repertoire to prevent mucosal diseases such as pneumonia, skin and soft tissue infections and urinary tract infections that are major causes of morbidity and mortality in the elderly, and key drivers of antimicrobial resistance. This review considers the challenges inherent to the prevention of bacterial diseases, particularly mucosal infections caused by major priority bacterial pathogens against which current vaccines are sub-optimal. It has become clear that prevention of many lung, urinary tract and skin infections requires more than circulating antibodies. Induction of Th1/Th17 cellular responses with tissue-resident memory (Trm) cells homing to mucosal tissues may be a pre-requisite for success.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model.

          Pertussis is a highly contagious respiratory illness caused by the bacterial pathogen Bordetella pertussis. Pertussis rates in the United States have been rising and reached a 50-y high of 42,000 cases in 2012. Although pertussis resurgence is not completely understood, we hypothesize that current acellular pertussis (aP) vaccines fail to prevent colonization and transmission. To test our hypothesis, infant baboons were vaccinated at 2, 4, and 6 mo of age with aP or whole-cell pertussis (wP) vaccines and challenged with B. pertussis at 7 mo. Infection was followed by quantifying colonization in nasopharyngeal washes and monitoring leukocytosis and symptoms. Baboons vaccinated with aP were protected from severe pertussis-associated symptoms but not from colonization, did not clear the infection faster than naïve animals, and readily transmitted B. pertussis to unvaccinated contacts. Vaccination with wP induced a more rapid clearance compared with naïve and aP-vaccinated animals. By comparison, previously infected animals were not colonized upon secondary infection. Although all vaccinated and previously infected animals had robust serum antibody responses, we found key differences in T-cell immunity. Previously infected animals and wP-vaccinated animals possess strong B. pertussis-specific T helper 17 (Th17) memory and Th1 memory, whereas aP vaccination induced a Th1/Th2 response instead. The observation that aP, which induces an immune response mismatched to that induced by natural infection, fails to prevent colonization or transmission provides a plausible explanation for the resurgence of pertussis and suggests that optimal control of pertussis will require the development of improved vaccines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of a pneumococcal conjugate vaccine against acute otitis media.

            Ear infections are a common cause of illness during the first two years of life. New conjugate vaccines may be able to prevent a substantial portion of cases of acute otitis media caused by Streptococcus pneumoniae. We enrolled 1662 infants in a randomized, double-blind efficacy trial of a heptavalent pneumococcal polysaccharide conjugate vaccine in which the carrier protein is the nontoxic diphtheria-toxin analogue CRM197. The children received either the study vaccine or a hepatitis B vaccine as a control at 2, 4, 6, and 12 months of age. The clinical diagnosis of acute otitis media was based on predefined criteria, and the bacteriologic diagnosis was based on a culture of middle-ear fluid obtained by myringotomy. Of the children who were enrolled, 95.1 percent completed the trial. With the pneumococcal vaccine, there were more local reactions than with the hepatitis B vaccine but fewer than with the combined whole-cell diphtheria-tetanus-pertussis and Haemophilus influenzae type b vaccine that was administered simultaneously. There were 2596 episodes of acute otitis media during the follow-up period between 6.5 and 24 months of age. The vaccine reduced the number of episodes of acute otitis media from any cause by 6 percent (95 percent confidence interval, -4 to 16 percent [the negative number indicates a possible increase in the number of episodes]), culture-confirmed pneumococcal episodes by 34 percent (95 percent confidence interval, 21 to 45 percent), and the number of episodes due to the serotypes contained in the vaccine by 57 percent (95 percent confidence interval, 44 to 67 percent). The number of episodes attributed to serotypes that are cross-reactive with those in the vaccine was reduced by 51 percent, whereas the number of episodes due to all other serotypes increased by 33 percent. The heptavalent pneumococcal polysaccharide-CRM197 conjugate vaccine is safe and efficacious in the prevention of acute otitis media caused by the serotypes included in the vaccine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group.

              To determine the efficacy, safety and immunogenicity of the heptavalent CRM197 pneumococcal conjugate vaccine against invasive disease caused by vaccine serotypes and to determine the effectiveness of this vaccine against clinical episodes of otitis media. The Wyeth Lederle Heptavalent CRM197 (PCV) was given to infants at 2, 4, 6 and 12 to 15 months of age in a double blind trial; 37,868 children were randomly assigned 1:1 to receive either the pneumococcal conjugate vaccine or meningococcus type C CRM197 conjugate. The primary study outcome was invasive disease caused by vaccine serotype. Other outcomes included overall impact on invasive disease regardless of serotype, effectiveness against clinical otitis media visits and episodes, impact against frequent and severe otitis media and ventilatory tube placement. In addition the serotype-specific efficacy against otitis media was estimated in an analysis of spontaneously draining ears. In the interim analysis in August, 1998, 17 of the 17 cases of invasive disease caused by vaccine serotype in fully vaccinated children and 5 of 5 of partially vaccinated cases occurred in the control group for a vaccine efficacy of 100%. Blinded case ascertainment was continued until April, 1999. As of that time 40 fully vaccinated cases of invasive disease caused by vaccine serotype had been identified, all but 1 in controls for an efficacy of 97.4% (95% confidence interval, 82.7 to 99.9%), and 52 cases, all but 3 in controls in the intent-to-treat analysis for an efficacy of 93.9% (95% confidence interval, 79.6 to 98.5%). There was no evidence of any increase of disease caused by nonvaccine serotypes. Efficacy for otitis media against visits, episodes, frequent otitis and ventilatory tube placement was 8.9, 7.0, 9.3 and 20.1% with P < 0.04 for all. In the analysis of spontaneously draining ears, serotype-specific effectiveness was 66.7%. This heptavalent pneumococcal conjugate appears to be highly effective in preventing invasive disease in young children and to have a significant impact on otitis media.
                Bookmark

                Author and article information

                Contributors
                jpoolman@its.jnj.com
                Journal
                NPJ Vaccines
                NPJ Vaccines
                NPJ Vaccines
                Nature Publishing Group UK (London )
                2059-0105
                11 September 2020
                11 September 2020
                2020
                : 5
                : 84
                Affiliations
                GRID grid.497529.4, ISNI 0000 0004 0625 7026, Bacterial Vaccine Discovery & Early Development, Janssen, ; Leiden, Netherlands
                Author information
                http://orcid.org/0000-0002-9583-8126
                Article
                232
                10.1038/s41541-020-00232-0
                7486369
                32963814
                9e6d3e82-5094-426f-8f55-0c70ad0a9d36
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 June 2020
                : 19 August 2020
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                bacterial infection,vaccines
                bacterial infection, vaccines

                Comments

                Comment on this article