1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highly Aligned Graphene Aerogels for Multifunctional Composites

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Aligned graphene building blocks take full advantages of the outstanding properties of graphene.

          • Comprehensive review of recent advancements in the utilization of highly aligned graphene aerogels for multifunctional applications.

          • By systematically summarizing the controlled assembly, aligned structural attributes, quantitative characterization methods, anisotropic properties, and multifunctional applications of graphene aerogels, this review enhances understanding of the material's potential for diverse applications, offering tailored properties and novel functionalities.

          Abstract

          Stemming from the unique in-plane honeycomb lattice structure and the sp 2 hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.

          Related collections

          Most cited references330

          • Record: found
          • Abstract: found
          • Article: not found

          The Li-ion rechargeable battery: a perspective.

          Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Graphene and Graphene Oxide: Synthesis, Properties, and Applications

            There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.

              Lon E Bell (2008)
              Thermoelectric materials are solid-state energy converters whose combination of thermal, electrical, and semiconducting properties allows them to be used to convert waste heat into electricity or electrical power directly into cooling and heating. These materials can be competitive with fluid-based systems, such as two-phase air-conditioning compressors or heat pumps, or used in smaller-scale applications such as in automobile seats, night-vision systems, and electrical-enclosure cooling. More widespread use of thermoelectrics requires not only improving the intrinsic energy-conversion efficiency of the materials but also implementing recent advancements in system architecture. These principles are illustrated with several proven and potential applications of thermoelectrics.
                Bookmark

                Author and article information

                Contributors
                wuying@ustb.edu.cn
                zhengqingbin@cuhk.edu.cn
                yuzz@mail.buct.edu.cn
                Journal
                Nanomicro Lett
                Nanomicro Lett
                Nano-Micro Letters
                Springer Nature Singapore (Singapore )
                2311-6706
                2150-5551
                15 February 2024
                15 February 2024
                December 2024
                : 16
                : 118
                Affiliations
                [1 ]Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, ( https://ror.org/02egmk993) Beijing, 100083 People’s Republic of China
                [2 ]Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004 People’s Republic of China
                [3 ]GRID grid.511521.3, School of Science and Engineering, , The Chinese University of Hong Kong, Shenzhen, ; Shenzhen, Guangdong 518172 People’s Republic of China
                [4 ]GRID grid.48166.3d, ISNI 0000 0000 9931 8406, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, , Beijing University of Chemical Technology, ; Beijing, 100029 People’s Republic of China
                Article
                1357
                10.1007/s40820-024-01357-w
                10869679
                38361077
                9e62b622-c60b-4aa2-a573-93e4c6a1f66f
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 7 November 2023
                : 3 January 2024
                Categories
                Review
                Custom metadata
                © Shanghai Jiao Tong University 2024

                highly aligned graphene aerogels,quantitative characterization of alignment,multifunctional composites,anisotropic properties,multifunctional applications

                Comments

                Comment on this article