2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population‐level effects of parasitism on a freshwater ecosystem engineer, the unionid mussel Anodonta anatina

      1 , 1 , 1 ,   1
      Freshwater Biology
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Parasites in food webs: the ultimate missing links

          Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Global Decline of Nonmarine Mollusks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is a healthy ecosystem one that is rich in parasites?

              Historically, the role of parasites in ecosystem functioning has been considered trivial because a cursory examination reveals that their relative biomass is low compared with that of other trophic groups. However there is increasing evidence that parasite-mediated effects could be significant: they shape host population dynamics, alter interspecific competition, influence energy flow and appear to be important drivers of biodiversity. Indeed they influence a range of ecosystem functions and have a major effect on the structure of some food webs. Here, we consider the bottom-up and top-down processes of how parasitism influences ecosystem functioning and show that there is evidence that parasites are important for biodiversity and production; thus, we consider a healthy system to be one that is rich in parasite species.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Freshwater Biology
                Freshw Biol
                Wiley
                0046-5070
                1365-2427
                December 2021
                October 04 2021
                December 2021
                : 66
                : 12
                : 2240-2250
                Affiliations
                [1 ]Aquatic Ecology Group Department of Zoology University of Cambridge Cambridge U.K.
                Article
                10.1111/fwb.13828
                9e5f27ed-38bb-4a1f-a83b-9fea54995ec4
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article