2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thermal enhancement and bioconvective analysis due to chemical reactive flow viscoelastic nanomaterial with modified heat theories: Bio-fuels cell applications

      ,
      Case Studies in Thermal Engineering
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Enhancing thermal conductivity of fluids with nanoparticles

          SK DAS (1995)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Novel Numerical Procedure for Simulating Steady MHD Convective Flows of Radiative Casson Fluids over a Horizontal Stretching Sheet with Irregular Geometry under the Combined Influence of Temperature-Dependent Viscosity and Thermal Conductivity

              A novel mathematical computing analysis for steady magnetohydrodynamic convective flows of radiative Casson fluids moving over a nonlinearly elongating elastic sheet with a nonuniform thickness is established successfully in this numerical exploration. Also, the significance of an externally applied magnetic field with space-dependent strength on the development of MHD convective flows of Casson viscoplastic fluids is evaluated thoroughly by including the momentous influence of linear thermal radiation along with the temperature-dependent viscosity and thermal conductivity effects. By combining the assumption of the low-inducing magnetic field with the boundary layer approximations, the governing partial differential equations monitoring the current flow model are transmuted accordingly into a set of nonlinear coupled ordinary differential equations by invoking appropriate similarity transformations. Moreover, these derived differential equations are resolved numerically by utilizing a new innovative GDQLLM algorithm integrating the local linearization technique with the generalized differential quadrature method. On the other hand, the behaviours of velocity and temperature fields are deliberated properly through various graphical illustrations and different sets of flow parameters. However, the accurate datasets generated for the skin friction coefficient and local Nusselt number are presented separately in tabular displays, whose physical insights are discussed comprehensively via the slope linear regression method (SLRM). As main results, it is demonstrated that the higher values of the Casson viscoplastic parameter reduce significantly the fluid velocity within the boundary layer region, while a partial reverse tendency is observed near the stretching sheet as long as the wall thickness parameter is increased. Besides the previously mentioned hydrodynamical features, it is also depicted that the thermal field throughout the medium is enhanced considerably with the elevating values of these parameters.
                Bookmark

                Author and article information

                Journal
                Case Studies in Thermal Engineering
                Case Studies in Thermal Engineering
                Elsevier BV
                2214157X
                December 2023
                December 2023
                : 52
                : 103768
                Article
                10.1016/j.csite.2023.103768
                9df95b2b-bde5-4f73-a96e-404039ec01ef
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,981

                Cited by5

                Most referenced authors299