18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Material discovery by combining stochastic surface walking global optimization with a neural network†

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A powerful material discovery tool is invented by combining SSW global optimization with neural network computing, which identifies unprecedented TiO 2 phases.

          Abstract

          While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a “Global-to-Global” approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2, is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Observation of an all-boron fullerene.

          After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40(-) with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Representing potential energy surfaces by high-dimensional neural network potentials.

            J Behler (2014)
            The development of interatomic potentials employing artificial neural networks has seen tremendous progress in recent years. While until recently the applicability of neural network potentials (NNPs) has been restricted to low-dimensional systems, this limitation has now been overcome and high-dimensional NNPs can be used in large-scale molecular dynamics simulations of thousands of atoms. NNPs are constructed by adjusting a set of parameters using data from electronic structure calculations, and in many cases energies and forces can be obtained with very high accuracy. Therefore, NNP-based simulation results are often very close to those gained by a direct application of first-principles methods. In this review, the basic methodology of high-dimensional NNPs will be presented with a special focus on the scope and the remaining limitations of this approach. The development of NNPs requires substantial computational effort as typically thousands of reference calculations are required. Still, if the problem to be studied involves very large systems or long simulation times this overhead is regained quickly. Further, the method is still limited to systems containing about three or four chemical elements due to the rapidly increasing complexity of the configuration space, although many atoms of each species can be present. Due to the ability of NNPs to describe even extremely complex atomic configurations with excellent accuracy irrespective of the nature of the atomic interactions, they represent a general and therefore widely applicable technique, e.g. for addressing problems in materials science, for investigating properties of interfaces, and for studying solvation processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conformationally Strained trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation.

              Computation has guided the design of conformationally-strained dioxolane-fused trans-cyclooctene (d-TCO) derivatives that display excellent reactivity in the tetrazine ligation. A water soluble derivative of 3,6-dipyridyl-s-tetrazine reacts with d-TCO with a second order rate k2 366,000 (+/- 15,000) M(-1)s(-1) at 25 °C in pure water. Furthermore, d-TCO derivatives can be prepared easily, are accessed through diastereoselective synthesis, and are typically crystalline bench-stable solids that are stable in aqueous solution, blood serum, or in the presence of thiols in buffered solution. GFP with a genetically encoded tetrazine-containing amino acid was site-specifically labelled in vivo by a d-TCO derivative. The fastest bioorthogonal reaction reported to date [k2 3,300,000 (+/- 40,000) M(-1)s(-1) in H2O at 25 °C] is described herein with a cyclopropane-fused trans-cyclooctene. d-TCO derivatives display rates within an order of magnitude of these fastest trans-cyclooctene reagents, and also display enhanced stability and aqueous solubility.
                Bookmark

                Author and article information

                Journal
                Chem Sci
                Chem Sci
                Chemical Science
                Royal Society of Chemistry
                2041-6520
                2041-6539
                1 September 2017
                30 June 2017
                : 8
                : 9
                : 6327-6337
                Affiliations
                [a ] Collaborative Innovation Center of Chemistry for Energy Material , Key Laboratory of Computational Physical Science (Ministry of Education) , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Department of Chemistry , Fudan University , Shanghai 200433 , China . Email: zpliu@ 123456fudan.edu.cn
                Author information
                http://orcid.org/0000-0002-0055-1510
                http://orcid.org/0000-0001-7486-1514
                http://orcid.org/0000-0002-2906-5217
                Article
                c7sc01459g
                10.1039/c7sc01459g
                5628601
                29308174
                9d6527f0-0220-445e-8547-554416418e57
                This journal is © The Royal Society of Chemistry 2017

                This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 April 2017
                : 29 June 2017
                Categories
                Chemistry

                Notes

                †Electronic supplementary information (ESI) available: Derivation for the gradient of J σ with respect to NN parameters. DFT calculation setups. Parameters of atom-centered symmetry functions for generating TiO 2 NN potential. Comparison of the performance of symmetry functions with different numbers of cutoff radii. Comparison of the computational cost of NN and DFT calculations. Comparison of structural properties of experimentally known TiO 2 phase using NN and DFT PES. XYZ coordination of structures. See DOI: 10.1039/c7sc01459g


                Comments

                Comment on this article