12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of the bacterial ribosome at 3.5 A resolution.

          We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intermediate states in the movement of transfer RNA in the ribosome.

            Direct chemical 'footprinting' shows that translocation of transfer RNA occurs in two discrete steps. During the first step, which occurs spontaneously after the formation of the peptide bond, the acceptor end of tRNA moves relative to the large ribosomal subunit resulting in 'hybrid states' of binding. During the second step, which is promoted by elongation factor EF-G, the anticodon end of tRNA, along with the messenger RNA, moves relative to the small ribosomal subunit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

              The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                22 March 2016
                29 February 2016
                April 2016
                29 August 2016
                : 23
                : 4
                : 333-341
                Affiliations
                [1 ]Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
                [2 ]Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, New York, New York, USA
                Author notes
                Correspondence should be addressed to S.C.B. ( scb2005@ 123456med.cornell.edu )
                [3]

                Denotes equal contribution

                Article
                NIHMS771428
                10.1038/nsmb.3177
                4821728
                26926435
                9cbf153a-730e-41a2-8678-4c79f84506bb

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article