3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photodynamic therapy (PDT) combines light, a photosensitizing chemical substance, and molecular oxygen to elicit cell death and is employed in the treatment of a variety of diseases, including cancer. The development of PDT treatment strategies requires in vitro assays to develop new photosensitizers. One such assay is the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide developed in 1983 and widely used in PDT studies. Despite the exponential growth in the number of publications, a uniform MTT protocol for use in the PDT area is lacking. Herein, we list and standardize the conditions to evaluate the photosensitizer methylene blue (MB) in glioblastoma and neuroblastoma cell lines. In addition, we review technical pitfalls and identify several variables that must be taken into consideration in order to provide accurate results with MTT. We conclude that for each cell line we must have a dose-response curve using the MTT assay and good controls for the standardization. Additionally, the optimal values of the time and cell density must be in the linear range of the curve to avoid errors. We describe all relevant points and outline the best normalization techniques to observe the differences between treatments.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

          A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photodynamic therapy of cancer: An update

            Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New photosensitizers for photodynamic therapy.

              Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                March 2021
                March 15 2021
                : 11
                : 6
                : 2603
                Article
                10.3390/app11062603
                9ca56d84-90cf-49b6-9ec9-5766752e5939
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article