14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          Silk as a Biomaterial.

          Silks are fibrous proteins with remarkable mechanical properties produced in fiber form by silkworms and spiders. Silk fibers in the form of sutures have been used for centuries. Recently regenerated silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films, for medical applications. Silks can be chemically modified through amino acid side chains to alter surface properties or to immobilize cellular growth factors. Molecular engineering of silk sequences has been used to modify silks with specific features, such as cell recognition or mineralization. The degradability of silk biomaterials can be related to the mode of processing and the corresponding content of beta sheet crystallinity. Several primary cells and cell lines have been successfully grown on different silk biomaterials to demonstrate a range of biological outcomes. Silk biomaterials are biocompatible when studied in vitro and in vivo. Silk scaffolds have been successfully used in wound healing and in tissue engineering of bone, cartilage, tendon and ligament tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

            Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Titanium dioxide nanoparticles: a review of current toxicological data

              Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                09 February 2016
                February 2016
                : 21
                : 2
                : 207
                Affiliations
                [1 ]Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania; mjr.virlan@ 123456gmail.com (M.J.R.V.); miricescudaniela@ 123456yahoo.com (D.M.); radu_radulescu24@ 123456yahoo.com (R.R.); alexandratotan@ 123456yahoo.com (A.T.); mariagreabu@ 123456yahoo.com (M.G.)
                [2 ]Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA; CSabliov@ 123456agcenter.lsu.edu
                Author notes
                [* ] Correspondence: bcalenic@ 123456yahoo.co.uk ; Tel.: +40-755-044-047
                Article
                molecules-21-00207
                10.3390/molecules21020207
                6273611
                26867191
                9b96b72e-4e37-49d9-a429-477cc5e412c0
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 December 2015
                : 28 January 2016
                Categories
                Review

                nanoparticles,organic,dentistry,polymers,regeneration
                nanoparticles, organic, dentistry, polymers, regeneration

                Comments

                Comment on this article