31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Paedocypris, a highly developmentally truncated fish from peat swamp forests in Southeast Asia, comprises the world's smallest vertebrate. Although clearly a cyprinid fish, a hypothesis about its phylogenetic position among the subfamilies of this largest teleost family, with over 2400 species, does not exist. Here we present a phylogenetic analyses of 227 cypriniform taxa, including 213 cyprinids, based upon complete mitochondrial DNA cytochrome b nucleotide sequences in order to determine the phylogenetic position of Paedocypris and to study the evolution of miniaturization among cyprinids.

          Results

          Our analyses reveal a strongly supported sister group relationship (clade C) between Paedocypris and Sundadanio, another developmentally truncated miniature cyprinid. Clade C was resolved as sister group of a larger clade characterized by small rasborine taxa (clade D). We found that miniaturised taxa are more numerous in the rasborine clade A, formed by clades C and D, than in any other cyprinid clade. The consensus cyt b in cyprinids includes 380 amino acids and an incomplete T–– stop codon. We noted that a few cyprinids mostly rasborine taxa placed within clade A had either a TAA or TAG stop codon, 376, 378, or 381 amino acids, and up to 10 base pairs (bp) of noncoding region before the 5' end of the tRNA-Thr. Our relaxed molecular clock estimates revealed high divergence times for the Sundadanio and Paedocypris clades and provide a first temporal framework for the evolution of miniaturization among cyprinids.

          Conclusion

          Paedocypris belongs to a clade (Rasborinae clade A) that shows recurrent miniaturization, including both taxa characterized by developmental truncation and by proportioned dwarfism. Its closest relative is another miniaturized taxon, the genus Sundadanio. We conclude that the miniaturized cyprinids with remarkable morphological novelties, like Paedocypris and Danionella, are at the same time the most developmentally truncated taxa. The miniaturized cyprinids with no or few developmental truncations like Boraras, Microrasbora, and Horadandia show no such evolutionary novelties.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Time dependency of molecular rate estimates and systematic overestimation of recent divergence times.

            Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (< 1-2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222-705 ka), Neandertals (108 ka; 70-156 ka), and modern humans (76 ka; 47-110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach.

              Rates of molecular evolution vary widely between lineages, but quantification of how rates change has proven difficult. Recently proposed estimation procedures have mainly adopted highly parametric approaches that model rate evolution explicitly. In this study, a semiparametric smoothing method is developed using penalized likelihood. A saturated model in which every lineage has a separate rate is combined with a roughness penalty that discourages rates from varying too much across a phylogeny. A data-driven cross-validation criterion is then used to determine an optimal level of smoothing. This criterion is based on an estimate of the average prediction error associated with pruning lineages from the tree. The methods are applied to three data sets of six genes across a sample of land plants. Optimally smoothed estimates of absolute rates entailed 2- to 10-fold variation across lineages.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                2007
                13 March 2007
                : 7
                : 38
                Affiliations
                [1 ]Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
                [2 ]Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland (permanent address) and Raffles Museum of Biodiversity Research, National University of Singapore, Kent Ridge, Singapore 119260
                [3 ]Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260
                Article
                1471-2148-7-38
                10.1186/1471-2148-7-38
                1838906
                17355618
                9b8f2636-fb2b-472a-aec0-4ecaa29e8ff3
                Copyright © 2007 Rüber et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 October 2006
                : 13 March 2007
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article