3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the Safety and Efficacy of Favipiravir in Adult Indian Patients with Mild-to-Moderate COVID-19 in a Real-World Setting

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To evaluate the safety and efficacy of favipiravir, which is prescribed for the treatment of patients with mild-to-moderate coronavirus disease 2019 (COVID-19) in India.

          Patients and Methods

          This was a prospective, open-label, multicenter, single-arm postmarketing study conducted in India. Patients with mild-to-moderate COVID-19 received favipiravir (3600 mg [1800 mg orally twice daily] on the first day, followed by 800 mg orally twice daily, up to a maximum of 14 days) as a part of their treatment. The primary endpoints were to evaluate the safety of favipiravir by assessing the number of adverse events (AEs) and treatment-related AEs. The secondary endpoints were to evaluate the efficacy of favipiravir by assessing time to clinical cure, rate of clinical cure, time to pyrexia resolution, rate of oxygen requirement, and all-cause mortality.

          Results

          A total of 1083 patients were enrolled in this study from December 2020 to June 2021. Adverse events were reported in 129 patients (11.9%), 116 (10.7%) of whom had mild AEs. Dose modification or withdrawal of favipiravir treatment was reported in four patients (0.37%). The median time to clinical cure and pyrexia resolution was 7 and 4 days, respectively. A total of 1036 patients (95.8%) exhibited clinical cure by day 14. Oxygen support was required by 15 patients (1.4%). One death was reported, which was unrelated to favipiravir.

          Conclusion

          In the real-world setting, favipiravir was well-tolerated, and no new safety signals were detected.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19

          Abstract Background Recent data suggest that complications and death from coronavirus disease 2019 (Covid-19) may be related to high viral loads. Methods In this ongoing, double-blind, phase 1–3 trial involving nonhospitalized patients with Covid-19, we investigated two fully human, neutralizing monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, used in a combined cocktail (REGN-COV2) to reduce the risk of the emergence of treatment-resistant mutant virus. Patients were randomly assigned (1:1:1) to receive placebo, 2.4 g of REGN-COV2, or 8.0 g of REGN-COV2 and were prospectively characterized at baseline for endogenous immune response against SARS-CoV-2 (serum antibody–positive or serum antibody–negative). Key end points included the time-weighted average change in viral load from baseline (day 1) through day 7 and the percentage of patients with at least one Covid-19–related medically attended visit through day 29. Safety was assessed in all patients. Results Data from 275 patients are reported. The least-squares mean difference (combined REGN-COV2 dose groups vs. placebo group) in the time-weighted average change in viral load from day 1 through day 7 was −0.56 log10 copies per milliliter (95% confidence interval [CI], −1.02 to −0.11) among patients who were serum antibody–negative at baseline and −0.41 log10 copies per milliliter (95% CI, −0.71 to −0.10) in the overall trial population. In the overall trial population, 6% of the patients in the placebo group and 3% of the patients in the combined REGN-COV2 dose groups reported at least one medically attended visit; among patients who were serum antibody–negative at baseline, the corresponding percentages were 15% and 6% (difference, −9 percentage points; 95% CI, −29 to 11). The percentages of patients with hypersensitivity reactions, infusion-related reactions, and other adverse events were similar in the combined REGN-COV2 dose groups and the placebo group. Conclusions In this interim analysis, the REGN-COV2 antibody cocktail reduced viral load, with a greater effect in patients whose immune response had not yet been initiated or who had a high viral load at baseline. Safety outcomes were similar in the combined REGN-COV2 dose groups and the placebo group. (Funded by Regeneron Pharmaceuticals and the Biomedical and Advanced Research and Development Authority of the Department of Health and Human Services; ClinicalTrials.gov number, NCT04425629.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study

            An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its caused coronavirus disease 2019 (COVID-19) has been reported in China since December 2019. More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was about 1%–2%. No specific treatment has been reported. Herein, we examine the effects of Favipiravir (FPV) versus Lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2–14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million U twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1–14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million U twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance time was found for the FPV arm versus the control arm (median (interquartile range, IQR), 4 (2.5–9) d versus 11 (8–13) d, P < 0.001). The FPV arm also showed significant improvement in chest imaging compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest imaging. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse reactions were found in the FPV arm than in the control arm. In this open-label nonrandomized control study, FPV showed significantly better treatment effects on COVID-19 in terms of disease progression and viral clearance; if causal, these results should be important information for establishing standard treatment guidelines to combat the SARS-CoV-2 infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Another Decade, Another Coronavirus

              For the third time in as many decades, a zoonotic coronavirus has crossed species to infect human populations. This virus, provisionally called 2019-nCoV, was first identified in Wuhan, China, in persons exposed to a seafood or wet market. The rapid response of the Chinese public health, clinical, and scientific communities facilitated recognition of the clinical disease and initial understanding of the epidemiology of the infection. First reports indicated that human-to-human transmission was limited or nonexistent, but we now know that such transmission occurs, although to what extent remains unknown. Like outbreaks caused by two other pathogenic human respiratory coronaviruses (severe acute respiratory syndrome coronavirus [SARS-CoV] and Middle East respiratory syndrome coronavirus [MERS-CoV]), 2019-nCoV causes respiratory disease that is often severe. 1 As of January 24, 2020, there were more than 800 reported cases, with a mortality rate of 3% (https://promedmail.org/). As now reported in the Journal, Zhu et al. 2 have identified and characterized 2019-nCoV. The viral genome has been sequenced, and these results in conjunction with other reports show that it is 75 to 80% identical to the SARS-CoV and even more closely related to several bat coronaviruses. 3 It can be propagated in the same cells that are useful for growing SARS-CoV and MERS-CoV, but notably, 2019-nCoV grows better in primary human airway epithelial cells than in standard tissue-culture cells, unlike SARS-CoV or MERS-CoV. Identification of the virus will allow the development of reagents to address key unknowns about this new coronavirus infection and guide the development of antiviral therapies. First, knowing the sequence of the genome facilitates the development of sensitive quantitative reverse-transcriptase–polymerase-chain-reaction assays to rapidly detect the virus. Second, the development of serologic assays will allow assessment of the prevalence of the infection in humans and in potential zoonotic sources of the virus in wet markets and other settings. These reagents will also be useful for assessing whether the human infection is more widespread than originally thought, since wet markets are present throughout China. Third, having the virus in hand will spur efforts to develop antiviral therapies and vaccines, as well as experimental animal models. Much still needs to be learned about this infection. Most important, the extent of interhuman transmission and the spectrum of clinical disease need to be determined. Transmission of SARS-CoV and MERS-CoV occurred to a large extent by means of superspreading events. 4,5 Superspreading events have been implicated in 2019-nCoV transmission, but their relative importance is unknown. Both SARS-CoV and MERS-CoV infect intrapulmonary epithelial cells more than cells of the upper airways. 4,6 Consequently, transmission occurs primarily from patients with recognized illness and not from patients with mild, nonspecific signs. It appears that 2019-nCoV uses the same cellular receptor as SARS-CoV (human angiotensin-converting enzyme 2 [hACE2]), 3 so transmission is expected only after signs of lower respiratory tract disease develop. SARS-CoV mutated over the 2002–2004 epidemic to better bind to its cellular receptor and to optimize replication in human cells, enhancing virulence. 7 Adaptation readily occurs because coronaviruses have error-prone RNA-dependent RNA polymerases, making mutations and recombination events frequent. By contrast, MERS-CoV has not mutated substantially to enhance human infectivity since it was detected in 2012. 8 It is likely that 2019-nCoV will behave more like SARS-CoV and further adapt to the human host, with enhanced binding to hACE2. Consequently, it will be important to obtain as many temporally and geographically unrelated clinical isolates as possible to assess the degree to which the virus is mutating and to assess whether these mutations indicate adaptation to the human host. Furthermore, if 2019-nCoV is similar to SARS-CoV, the virus will spread systemically. 9 Obtaining patient samples at autopsy will help elucidate the pathogenesis of the infection and modify therapeutic interventions rationally. It will also help validate results obtained from experimental infections of laboratory animals. A second key question is identification of the zoonotic origin of the virus. Given its close similarity to bat coronaviruses, it is likely that bats are the primary reservoir for the virus. SARS-CoV was transmitted to humans from exotic animals in wet markets, whereas MERS-CoV is transmitted from camels to humans. 10 In both cases, the ancestral hosts were probably bats. Whether 2019-nCoV is transmitted directly from bats or by means of intermediate hosts is important to understand and will help define zoonotic transmission patterns. A striking feature of the SARS epidemic was that fear played a major role in the economic and social consequences. Although specific anticoronaviral therapies are still in development, we now know much more about how to control such infections in the community and hospitals, which should alleviate some of this fear. Transmission of 2019-nCoV probably occurs by means of large droplets and contact and less so by means of aerosols and fomites, on the basis of our experience with SARS-CoV and MERS-CoV. 4,5 Public health measures, including quarantining in the community as well as timely diagnosis and strict adherence to universal precautions in health care settings, were critical in controlling SARS and MERS. Institution of similar measures will be important and, it is hoped, successful in reducing the transmission of 2019-nCoV.
                Bookmark

                Author and article information

                Journal
                Int J Gen Med
                Int J Gen Med
                ijgm
                International Journal of General Medicine
                Dove
                1178-7074
                03 May 2022
                2022
                : 15
                : 4551-4563
                Affiliations
                [1 ]Critical Care Medicine, Care Hospital , Hyderabad, Telangana, India
                [2 ]Global Medical Affairs, Glenmark Pharmaceuticals Ltd ., Mumbai, Maharashtra, India
                [3 ]St. George’s Hospital , Mumbai, Maharashtra, India
                [4 ]Shree Hospital & Critical Care Center , Nagpur, Maharashtra, India
                [5 ]NIMS Medicity , Trivandrum, Kerala, India
                [6 ]Department of Pharmacology, Government Medical College , Nagpur, Maharashtra, India
                [7 ]Renova Neelima Hospitals , Hyderabad, Telangana, India
                [8 ]Respiratory Medicine, Dr Vasantrao Pawar Medical College , Nashik, Maharashtra, India
                [9 ]Bangalore Medical College , Bengaluru, Karnataka, India
                [10 ]Siddhi Hospital , Nasik, Maharashtra, India
                [11 ]Aster Prime Hospital , Hyderabad, Telangana, India
                [12 ]Department of Medicine, BYL Medical college & Nair Hospital , Mumbai, Maharashtra, India
                [13 ]Department of Medicine, LT Medical College & Sion Hospital , Mumbai, Maharashtra, India
                [14 ]Clinical Research Operations, Glenmark Pharmaceuticals Ltd ., Mumbai, Maharashtra, India
                [15 ]Glenmark Pharmaceuticals Ltd ., Mumbai, Maharashtra, India
                [16 ]Glenmark Pharmaceuticals Ltd ., Waterford, UK
                Author notes
                Correspondence: Sagar Bhagat, Tel +919930553638, Email Sagar.Bhagat@glenmarkpharma.com
                Article
                349241
                10.2147/IJGM.S349241
                9078344
                35535140
                9b2760ad-c59a-421a-a76c-b3de51d9d98d
                © 2022 Reddy et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 13 November 2021
                : 09 March 2022
                Page count
                Figures: 4, Tables: 12, References: 25, Pages: 13
                Funding
                Funded by: Glenmark Pharmaceuticals Limited, India;
                This study was sponsored and funded by Glenmark Pharmaceuticals Limited, India.
                Categories
                Clinical Trial Report

                Medicine
                antiviral,coronavirus,covid-19,favipiravir,sars-cov-2
                Medicine
                antiviral, coronavirus, covid-19, favipiravir, sars-cov-2

                Comments

                Comment on this article