4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of immunoassays have been developed to detect specific anti-SARS-CoV-2 antibodies; however, not always they are functional to neutralize the virus. The reference test for the anti-spike neutralizing antibodies (nAbs) ability to counteract the viral infection is the virus neutralization test (VNT). Great interest is developing on reliable serological assays allowing antibodies concentration and antibody protective titer correlation. The aim of our study was to detect nAbs serum levels in paucisymptomatic, symptomatic and vaccinated subjects, to find a cut-off value able to protect from virus infection.

          nAbs serum levels were detected by a competitive automated immunoassay, in association to VNT with the SARS-CoV-2 original and British variant strains.

          The median nAbs concentrations were: 281,3 BAU/ml for paucisymptomatics; 769,4 BAU/ml for symptomatics; 351,65 BAU/ml for the vaccinated cohort; 983 BAU/ml considering only the second dose vaccinated individuals. The original strain VNT analysis showed 1:80 median neutralization titers in paucisymptomatic and vaccinated subjects; 1:160 in symptomatic patients; 1:160 in the second dose groups. The British variant VNT analysis showed lower neutralization titers in paucisymptomatic and vaccinated groups (1:40); the same titer in symptomatic patients (1:160); the second dose group confirmed the original strain titer (1:160).

          In conclusion, our data showed optimal correlations with a proportional increase between neutralizing activity and antibody concentration, making nAbs detection a good alternative to virus neutralization assays, difficult to carry out in routine laboratories. Finally, ROC curve analysis established a cut-off of 408,6 BAU/ml to identify subjects with a low risk of infection.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

          A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections

            The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described. We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization. Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1. The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d). The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0.028). The virus-specific IgG levels in the asymptomatic group (median S/CO, 3.4; IQR, 1.6-10.7) were significantly lower (P = 0.005) relative to the symptomatic group (median S/CO, 20.5; IQR, 5.8-38.2) in the acute phase. Of asymptomatic individuals, 93.3% (28/30) and 81.1% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 96.8% (30/31) and 62.2% (23/37) of symptomatic patients. Forty percent of asymptomatic individuals became seronegative and 12.9% of the symptomatic group became negative for IgG in the early convalescent phase. In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines. These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection. The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human neutralizing antibodies elicited by SARS-CoV-2 infection

              The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2)2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2.
                Bookmark

                Author and article information

                Journal
                Int Immunopharmacol
                Int Immunopharmacol
                International Immunopharmacology
                Published by Elsevier B.V.
                1567-5769
                1878-1705
                4 October 2021
                4 October 2021
                : 108215
                Affiliations
                [a ]Department of Experimental Medicine, Tor Vergata University, Rome, Italy
                [b ]Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
                [c ]Tor Vergata University Hospital, Rome, Italy
                [d ]Lifebrain srl, Rome, Italy
                [e ]IFCC Emerging Technologies Division, Milan, Italy
                Author notes
                [* ]Corresponding author at: University of Rome “Tor Vergata” Department of Experimental Medicine, Via Montpellier 1, 00133 Rome, Italy.
                [1]

                These Authors equally contributed to the study.

                Article
                S1567-5769(21)00851-1 108215
                10.1016/j.intimp.2021.108215
                8487771
                34649115
                9b0a54cb-bc3a-4797-ab7f-95d14af4f0ac
                © 2021 Published by Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 20 July 2021
                : 22 September 2021
                : 29 September 2021
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                covid-19,live vnt,sars-cov-2 neutralizing antibodies,serological immunoassay

                Comments

                Comment on this article