Algorithms represent one of the fundamental issues in computer science, while asymptotic notations are widely accepted as the main tool for estimating the complexity of algorithms. Over the years a certain number of asymptotic notations have been proposed. Each of these notations is based on the comparison of various complexity functions with a given complexity function. In this paper, we define a new asymptotic notation, called “Weak Theta,” that uses the comparison of various complexity functions with two given complexity functions. Weak Theta notation is especially useful in characterizing complexity functions whose behaviour is hard to be approximated using a single complexity function. In addition, in order to highlight the main particularities of Weak Theta, we propose and prove several theoretical results: properties of Weak Theta, criteria for comparing two complexity functions, and properties of a new set of complexity functions (also defined in the paper) based on Weak Theta. Furthermore, to illustrate the usefulness of our notation, we discuss an application of Weak Theta in artificial intelligence.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.