3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Cannabidiol on Locomotor Activity

      , , , , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabidiol (CBD) is the second cannabinoid, in order of importance after Δ9-tetrahydrocannabinol (THC), from Cannabis sativa. Unlike THC, CBD does not cause psychotomimetic effects, and although these compounds have the same chemical formula, their pharmacological characteristics are not equivalent. Preclinical studies suggest that CBD has anti-inflammatory, analgesic, anxiolytic, antiemetic, anticonvulsant, and antipsychotic properties and influences the sleep–wake cycle. The evaluation of effects on spontaneous motor activity is crucial in experimental pharmacology, and the careful measurement of laboratory animal movement is an established method to recognize the effects of stimulant and depressant drugs. The potential influence of CBD on locomotor activity has been investigated through numerous in vivo experiments. However, there is no clear picture of the impact of CBD on these issues, even though it is administered alone for medical uses and sold with THC as a drug for pain caused by muscle spasms in multiple sclerosis, and it was recently licensed as a drug for severe forms of infantile epilepsy. On this basis, with the aim of developing deeper knowledge of this issue, scientific data on CBD’s influence on locomotor activity are discussed here. We conducted research using PubMed, Scopus, Google Scholar, and a search engine for literature between January 2009 and December 2021 on life sciences and biomedical topics using the keywords “motor activity”, “locomotor activity”, and “locomotion” in combination with “cannabidiol”. In this article, we discuss findings describing the effects on locomotor activity of the CBD precursor cannabidiolic acid and of CBD alone or in combination with THC, together with the effects of CBD on locomotor modifications induced by diseases and on locomotor changes induced by other substances.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacokinetics and pharmacodynamics of cannabinoids.

          Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

            R Pertwee (2008)
            Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical constituents of marijuana: the complex mixture of natural cannabinoids.

              The cannabis plant (Cannabis sativa L.) and products thereof (such as marijuana, hashish and hash oil) have a long history of use both as a medicinal agent and intoxicant. Over the last few years there have been an active debate regarding the medicinal aspects of cannabis. Currently cannabis products are classified as Schedule I drugs under the Drug Enforcement Administration (DEA) Controlled Substances act, which means that the drug is only available for human use as an investigational drug. In addition to the social aspects of the use of the drug and its abuse potential, the issue of approving it as a medicine is further complicated by the complexity of the chemical make up of the plant. This manuscript discusses the chemical constituents of the plant with particular emphasis on the cannabinoids as the class of compounds responsible for the drug's psychological properties.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                May 2022
                April 27 2022
                : 12
                : 5
                : 652
                Article
                10.3390/life12050652
                35629320
                9a20950f-912c-47ca-8f60-7abb4846a882
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article