6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of inorganic HgCl2 on adipogenesis.

      Toxicological Sciences
      3T3-L1 Cells, Adipocytes, drug effects, metabolism, pathology, Animals, Cell Differentiation, Environmental Pollutants, toxicity, Glucose, Glucose Transporter Type 4, Insulin, pharmacology, JNK Mitogen-Activated Protein Kinases, Lipid Metabolism, MAP Kinase Kinase 4, Mercuric Chloride, Mice, Mitogen-Activated Protein Kinase Kinases, Monosaccharide Transport Proteins, Muscle Proteins, Receptors, Cytoplasmic and Nuclear, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mercury is a common pollutant that alters glucose metabolism in adipocytes; however, the effect of HgCl2 on differentiating adipocytes and their subsequent metabolic function is not well understood. Two adipocyte models, the 3T3-L1 and C3H10T1/2 (10T1/2) cell lines, were differentiated in the presence of HgCl2. To assess the amount of differentiation in a population, markers of differentiation (i.e., PPARgamma and GLUT 4 expression and lipid accumulation) and functions of adipocytes (i.e., glucose transport and insulin-induced glucose transport) were measured. HgCl2 exposure significantly decreased the number of phenotypic adipocytes and PPARgamma expression in both 3T3-L1 and 10T1/2 cells without effects on cell viability. GLUT 4 was significantly reduced by HgCl2 treatment in 10T1/2 but not 3T3-L1 cells. Exposure to HgCl2 during differentiation increased basal glucose uptake in a dose-dependent manner (up to 2.5-fold) and decreased insulin-induced glucose uptake in 3T3-L1 adipocytes. In contrast, HgCl2 had little effect on basal or insulin-induced glucose uptake in 10T1/2 cells, possibly due to their lower insulin responsiveness. We examined the effect of HgCl2 exposure on signaling event involved in differentiation of adipocytes and cellular stress, namely, the phosphorylation of ERK1/2 and JNK, respectively. HgCl2 exposure had no effect on ERK1/2 phosphorylation in either cell line, increased JNK phosphorylation in the 10T1/2, and had no effect on JNK phosphorylation in 3T3-L1 cells. These data indicate HgCl2 exposure can inhibit the differentiation of fibroblasts into adipocytes as well as influence signaling events and the subsequent metabolic activity of differentiated adipocytes.

          Related collections

          Author and article information

          Comments

          Comment on this article