2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Are Activity Wrist-Worn Devices Accurate for Determining Heart Rate during Intense Exercise?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The market for wrist-worn devices is growing at previously unheard-of speeds. A consequence of their fast commercialization is a lack of adequate studies testing their accuracy on varied populations and pursuits. To provide an understanding of wearable sensors for sports medicine, the present study examined heart rate (HR) measurements of four popular wrist-worn devices, the (Fitbit Charge (FB), Apple Watch (AW), Tomtom runner Cardio (TT), and Samsung G2 (G2)), and compared them with gold standard measurements derived by continuous electrocardiogram examination (ECG). Eight athletes participated in a comparative study undergoing maximal stress testing on a cycle ergometer or a treadmill. We analyzed 1,286 simultaneous HR data pairs between the tested devices and the ECG. The four devices were reasonably accurate at the lowest activity level. However, at higher levels of exercise intensity the FB and G2 tended to underestimate HR values during intense physical effort, while the TT and AW devices were fairly reliable. Our results suggest that HR estimations should be considered cautiously at specific intensities. Indeed, an effective intervention is required to register accurate HR readings at high-intensity levels (above 150 bpm). It is important to consider that even though none of these devices are certified or sold as medical or safety devices, researchers must nonetheless evaluate wrist-worn wearable technology in order to fully understand how HR affects psychological and physical health, especially under conditions of more intense exercise.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: not found
          • Article: not found

          STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Overview of Heart Rate Variability Metrics and Norms

            Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A real-time QRS detection algorithm.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOENG
                Bioengineering
                Bioengineering
                MDPI AG
                2306-5354
                February 2023
                February 15 2023
                : 10
                : 2
                : 254
                Article
                10.3390/bioengineering10020254
                98d4c491-8232-4da8-a082-d0709f7a2f0d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article