8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A high-resolution record of early Paleozoic climate

      , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spatial coverage and temporal resolution of the Early Paleozoic paleoclimate record are limited, primarily due to the paucity of well-preserved skeletal material commonly used for oxygen-isotope paleothermometry. Bulk-rock δ 18 O datasets can provide broader coverage and higher resolution, but are prone to burial alteration. We assess the diagenetic character of two thick Cambro–Ordovician carbonate platforms with minimal to moderate burial by pairing clumped and bulk isotope analyses of micritic carbonates. Despite resetting of the clumped-isotope thermometer at both sites, our samples indicate relatively little change to their bulk δ 18 O due to low fluid exchange. Consequently, both sequences preserve temporal trends in δ 18 O . Motivated by this result, we compile a global suite of bulk rock δ 18 O data, stacking overlapping regional records to minimize diagenetic influences on overall trends. We find good agreement of bulk rock δ 18 O with brachiopod and conodont δ 18 O trends through time. Given evidence that the δ 18 O value of seawater has not evolved substantially through the Phanerozoic, we interpret this record as primarily reflecting changes in tropical, nearshore seawater temperatures and only moderately modified by diagenesis. Focusing on the samples with the most enriched, and thus likely least-altered, δ 18 O values, we reconstruct Late Cambrian warming, Early Ordovician extreme warmth, and cooling around the Early–Middle Ordovician boundary. Our record is consistent with models linking the Great Ordovician Biodiversification Event to cooling of previously very warm tropical oceans. In addition, our high-temporal-resolution record suggests previously unresolved transient warming and climate instability potentially associated with Late Ordovician tectonic events.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mass extinctions in the marine fossil record.

              A new compilation of fossil data on invertebrate and vertebrate families indicates that four mass extinctions in the marine realm are statistically distinct from background extinction levels. These four occurred late in the Ordovician, Permian, Triassic, and Cretaceous periods. A fifth extinction event in the Devonian stands out from the background but is not statistically significant in these data. Background extinction rates appear to have declined since Cambrian time, which is consistent with the prediction that optimization of fitness should increase through evolutionary time.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 01 2021
                February 09 2021
                February 01 2021
                February 09 2021
                : 118
                : 6
                : e2013083118
                Article
                10.1073/pnas.2013083118
                33526667
                98cb6a79-fefe-487d-ac96-354172f90640
                © 2021

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article