16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          PHOSPHORUS IN THEENVIRONMENT: Natural Flows and Human Interferences

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003).

            Large quantities of phosphate present in wastewater is one of the main causes of eutrophication that negatively affects many natural water bodies, both fresh water and marine. It is desirable that water treatment facilities remove phosphorus from the wastewater before they are returned to the environment. Total removal or at least a significant reduction of phosphorus is obligatory, if not always fulfilled, in most countries. This comprehensive review summarizes the current status in phosphorus-removal technologies from the most common approaches, like metal precipitation, constructed wetland systems, adsorption by various microorganisms either in a free state or immobilized in polysaccharide gels, to enhanced biological phosphorus removal using activated sludge systems, and several innovative engineering solutions. As chemical precipitation renders the precipitates difficult, if not impossible, to recycle in an economical industrial manner, biological removal opens opportunities for recovering most of the phosphorus and beneficial applications of the product. This review includes the options of struvite (ammonium-magnesium-phosphate) and hydroxyapatite formation and other feasible options using, the now largely regarded contaminant, phosphorus in wastewater, as a raw material for the fertilizer industry. Besides updating our knowledge, this review critically evaluates the advantage and difficulties behind each treatment and indicates some of the most relevant open questions for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

              Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Environmental Science and Technology
                Critical Reviews in Environmental Science and Technology
                Informa UK Limited
                1064-3389
                1547-6537
                November 04 2014
                November 04 2014
                : 45
                : 4
                : 336-384
                Article
                10.1080/10643389.2013.866531
                9875d201-62aa-4ba1-8b70-d86680981893
                © 2014
                History

                Comments

                Comment on this article