5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      One of these things is not like the other: Time to differentiate between relative age and biological maturity selection biases in soccer?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The relationship between peak height velocity and physical performance in youth soccer players.

          Longitudinal changes in height, weight and physical performance were studied in 33 Flemish male youth soccer players from the Ghent Youth Soccer Project. The players' ages at the start of the study ranged from 10.4 to 13.7 years, with a mean age of 12.2 +/- 0.7 years. Longitudinal changes were studied over a 5 year period. Peak height velocity and peak weight velocity were determined using non-smoothed polynomials. The estimations of peak height velocity, peak weight velocity and age at peak height velocity were 9.7 +/- 1.5 cm x year-1, 8.4 +/- 3.0 kg x year-1 and 13.8 +/- 0.8 years, respectively. Peak weight velocity occurred, on average, at the same age as peak height velocity. Balance, speed of limb movement, trunk strength, upper-body muscular endurance, explosive strength, running speed and agility, cardiorespiratory endurance and anaerobic capacity showed peak development at peak height velocity. A plateau in the velocity curves was observed after peak height velocity for upper-body muscular endurance, explosive strength and running speed. Flexibility exhibited peak development during the tear after peak height velocity. Trainers and coaches should be aware of the individual characteristics of the adolescent growth spurt and the training load should also be individualized at this time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The relative age effect in youth soccer across Europe.

            The potential asymmetries in the birth-date distributions of youth soccer players across ten European countries (2175 age citations) were considered. First, we examined the birth-dates of players representing national youth teams in international competitions. Second, the birth-dates of players representing professional club teams in international youth tournaments were analysed. Kolmogorov-Smirnov tests were used to assess differences between observed and expected birth-date distributions. Regression analyses were employed to examine the relationship between month of birth and number of players in the different samples. The results showed an over-representation of players born in the first quarter of the selection year (from January to March) for all the national youth selections at the under-15 (U-15), U-16, U-17 and U-18 age categories, as well as for the UEFA U-16 tournaments and Meridian Cup. Players with a greater relative age are more likely to be identified as "talented" because of the likely physical advantages they have over their "younger" peers. Some options for reducing the relative age effect are offered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological maturation of youth athletes: assessment and implications.

              The search for talent is pervasive in youth sports. Selection/exclusion in many sports follows a maturity-related gradient largely during the interval of puberty and growth spurt. As such, there is emphasis on methods for assessing maturation. Commonly used methods for assessing status (skeletal age, secondary sex characteristics) and estimating timing (ages at peak height velocity (PHV) and menarche) in youth athletes and two relatively recent anthropometric (non-invasive) methods (status-percentage of predicted near adult height attained at observation, timing-predicted maturity offset/age at PHV) are described and evaluated. The latter methods need further validation with athletes. Currently available data on the maturity status and timing of youth athletes are subsequently summarised. Selection for sport and potential maturity-related correlates are then discussed in the context of talent development and associated models. Talent development from novice to elite is superimposed on a constantly changing base-the processes of physical growth, biological maturation and behavioural development, which occur simultaneously and interact with each other. The processes which are highly individualised also interact with the demands of a sport per se and with involved adults (coaches, trainers, administrators, parents/guardians).
                Bookmark

                Author and article information

                Contributors
                Journal
                Science and Medicine in Football
                Science and Medicine in Football
                Informa UK Limited
                2473-3938
                2473-4446
                June 21 2021
                Affiliations
                [1 ]Department of Sport, Health and Exercise Science, University of Hull, Hull, UK.
                [2 ]School of Sport and Exercise Science, University of Birmingham, UK
                [3 ]Department for Health, University of Bath, Bath, UK
                Article
                10.1080/24733938.2021.1946133
                35866421
                98704590-ef12-424e-9516-999cb0309893
                © 2021
                History

                Comments

                Comment on this article