17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Symbiosis-inspired approaches to antibiotic discovery

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in our understanding of symbioses, enabled by newly developed “omics” and co-culturing technologies, inspire new approaches to antibiotic discovery.

          Abstract

          Covering: 2010 up to 2017

          Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal–microbe symbiosis studies and plant–microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal–microbe symbioses. However, much less is known about microbe–microbe systems involving interspecies interactions. Microbe-derived small molecules ( i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from “orphan”, or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in “omics” technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters.

          Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human commensals producing a novel antibiotic impair pathogen colonization.

            The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Big effects from small changes: possible ways to explore nature's chemical diversity.

              Fungi or bacteria that produce secondary metabolites often have the potential to bring up various compounds from a single strain. The molecular basis for this well-known observation was confirmed in the last few years by several sequencing projects of different microorganisms. Besides well-known examples about induction of a selected biosynthesis (for example, by high- or low-phosphate cultivation media), no overview about the potential in this field for finding natural products was given. We have investigated the systematic alteration of easily accessible cultivation parameters (for example, media composition, aeration, culture vessel, addition of enzyme inhibitors) in order to increase the number of secondary metabolites available from one microbial source. We termed this way of revealing nature's chemical diversity the 'OSMAC (One Strain-Many Compounds) approach' and by using it we were able to isolate up to 20 different metabolites in yields up to 2.6 g L(-1) from a single organism. These compounds cover nearly all major natural product families, and in some cases the high production titer opens new possibilities for semisynthetic methods to enhance even more the chemical diversity of selected compounds. The OSMAC approach offers a good alternative to industrial high-throughput screening that focuses on the active principle in a distinct bioassay. In consequence, the detection of additional compounds that might be of interest as lead structures in further bioassays is impossible and clearly demonstrates the deficiency of the industrial procedure. Furthermore, our approach seems to be a useful tool to detect those metabolites that are postulated to be the final products of an amazing number of typical secondary metabolite gene clusters identified in several microorganisms. If one assumes a (more or less) defined reservoir of genetic possibilities for several biosynthetic pathways in one strain that is used for a highly flexible production of secondary metabolites depending on the environment, the OSMAC approach might give more insight into the role of secondary metabolism in the microbial community or during the evolution of life itself.
                Bookmark

                Author and article information

                Journal
                NPRRDF
                Natural Product Reports
                Nat. Prod. Rep.
                Royal Society of Chemistry (RSC)
                0265-0568
                1460-4752
                2017
                2017
                : 34
                : 7
                : 784-814
                Affiliations
                [1 ]University of Wisconsin Madison
                [2 ]School of Pharmacy
                [3 ]Div. of Pharmaceutical Sciences
                [4 ]Madison
                [5 ]USA
                Article
                10.1039/C7NP00009J
                5555300
                28561849
                984131d1-4f1f-4b21-9c81-8dd8264ada6d
                © 2017
                History

                Comments

                Comment on this article