14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genome duplication and the origin of angiosperms.

          Despite intensive research, little is known about the origin of the angiosperms and their rise to ecological dominance during the Early Cretaceous. Based on whole-genome analyses of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for the creation of many important developmental and regulatory genes found in extant angiosperm genomes. Here, we argue that these ancient polyploidy events might have also had an important role in the origin and diversification of the angiosperms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is evolvability evolvable?

            In recent years, biologists have increasingly been asking whether the ability to evolve--the evolvability--of biological systems, itself evolves, and whether this phenomenon is the result of natural selection or a by-product of other evolutionary processes. The concept of evolvability, and the increasing theoretical and empirical literature that refers to it, may constitute one of several pillars on which an extended evolutionary synthesis will take shape during the next few years, although much work remains to be done on how evolvability comes about.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years.

              Of the approximately 250,000 species of flowering plants, nearly one in ten are members of the Compositae (Asteraceae), a diverse family found in almost every habitat on all continents except Antarctica. With an origin in the mid Eocene, the Compositae is also a relatively young family with remarkable diversifications during the last 40 My. Previous cytologic and systematic investigations suggested that paleopolyploidy may have occurred in at least one Compositae lineage, but a recent analysis of genomic data was equivocal. We tested for evidence of paleopolyploidy in the evolutionary history of the family using recently available expressed sequence tag (EST) data from the Compositae Genome Project. Combined with data available on GenBank, we analyzed nearly 1 million ESTs from 18 species representing seven genera and four tribes. Our analyses revealed at least three ancient whole-genome duplications in the Compositae-a paleopolyploidization shared by all analyzed taxa and placed near the origin of the family just prior to the rapid radiation of its tribes and independent genome duplications near the base of the tribes Mutisieae and Heliantheae. These results are consistent with previous research implicating paleopolyploidy in the evolution and diversification of the Heliantheae. Further, we observed parallel retention of duplicate genes from the basal Compositae genome duplication across all tribes, despite divergence times of 33-38 My among these lineages. This pattern of retention was also repeated for the paleologs from the Heliantheae duplication. Intriguingly, the categories of genes retained in duplicate were substantially different from those in Arabidopsis. In particular, we found that genes annotated to structural components or cellular organization Gene Ontology categories were significantly enriched among paleologs, whereas genes associated with transcription and other regulatory functions were significantly underrepresented. Our results suggest that paleopolyploidy can yield strikingly consistent signatures of gene retention in plant genomes despite extensive lineage radiations and recurrent genome duplications but that these patterns vary substantially among higher taxonomic categories.
                Bookmark

                Author and article information

                Journal
                Proc Biol Sci
                Proc. Biol. Sci
                RSPB
                royprsb
                Proceedings of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8452
                1471-2954
                7 December 2015
                7 December 2015
                : 282
                : 1820
                : 20152289
                Affiliations
                School of Biological Sciences, University of Bristol , Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
                Author notes
                Article
                rspb20152289
                10.1098/rspb.2015.2289
                4685785
                26631568
                97ee298e-3e02-4282-959b-cf7ee2791fe8
                © 2015 The Authors.

                © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 21 September 2015
                : 3 November 2015
                Funding
                Funded by: NERC;
                Award ID: NE/K500823/1
                Categories
                1001
                70
                204
                197
                Research Articles
                Custom metadata
                December 7, 2015

                Life sciences
                angiosperms,genome size,evolvability,polyploidy,genome duplication
                Life sciences
                angiosperms, genome size, evolvability, polyploidy, genome duplication

                Comments

                Comment on this article