57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurosteroids and GABA-A Receptor Function

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABA A-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl - currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABA A-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABA A-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABA A-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABA A-receptor, mood changes, and cognitive functions.

          Related collections

          Most cited references336

          • Record: found
          • Abstract: found
          • Article: not found

          Neurosteroids: endogenous regulators of the GABA(A) receptor.

          GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ionic Blockage of Sodium Channels in Nerve

            Increasing the hydrogen ion concentration of the bathing medium reversibly depresses the sodium permeability of voltage-clamped frog nerves. The depression depends on membrane voltage: changing from pH 7 to pH 5 causes a 60% reduction in sodium permeability at +20 mV, but only a 20% reduction at +180 mV. This voltage-dependent block of sodium channels by hydrogen ions is explained by assuming that hydrogen ions enter the open sodium channel and bind there, preventing sodium ion passage. The voltage dependence arises because the binding site is assumed to lie far enough across the membrane for bound ions to be affected by part of the potential difference across the membrane. Equations are derived for the general case where the blocking ion enters the channel from either side of the membrane. For H+ ion blockage, a simpler model, in which H+ enters the channel only from the bathing medium, is found to be sufficient. The dissociation constant of H+ ions from the channel site, 3.9 x 10-6 M (pK a 5.4), is like that of a carboxylic acid. From the voltage dependence of the block, this acid site is about one-quarter of the way across the membrane potential from the outside. In addition to blocking as described by the model, hydrogen ions also shift the responses of sodium channel "gates" to voltage, probably by altering the surface potential of the nerve. Evidence for voltage-dependent blockage by calcium ions is also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits.

              Axons in the cerebral cortex receive synaptic input at the axon initial segment almost exclusively from gamma-aminobutyric acid-releasing (GABAergic) axo-axonic cells (AACs). The axon has the lowest threshold for action potential generation in neurons; thus, AACs are considered to be strategically placed inhibitory neurons controlling neuronal output. However, we found that AACs can depolarize pyramidal cells and can initiate stereotyped series of synaptic events in rat and human cortical networks because of a depolarized reversal potential for axonal relative to perisomatic GABAergic inputs. Excitation and signal propagation initiated by AACs is supported by the absence of the potassium chloride cotransporter 2 in the axon.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrin.
                Frontiers in Endocrinology
                Frontiers Research Foundation
                1664-2392
                25 July 2011
                04 October 2011
                2011
                : 2
                : 44
                Affiliations
                [1] 1simpleSection of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University Umeå, Sweden
                Author notes

                Edited by: Hubert Vaudry, University of Rouen, France

                Reviewed by: Valerio Magnaghi, Università Degli Studi di Milano, Italy; Giovanni Biggio, University of Cagliari, Italy; Remy Schlichter, University Strasbourg – CNRS, France

                *Correspondence: Mingde Wang, Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University, 901 85 Umeå, Sweden. e-mail: mingde.wang@ 123456obgyn.umu.se

                This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2011.00044
                3356040
                22654809
                97587e58-f1d8-4450-ae46-8335f97ae989
                Copyright © 2011 Wang.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 05 July 2011
                : 14 September 2011
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 350, Pages: 23, Words: 23734
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                thdoc,allopregnanolone,pregnenolone sulfate,cognition,premenstrual dysphoric disorder,gabaa-receptor,mood

                Comments

                Comment on this article