8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination

      , ,
      Ecotoxicology and Environmental Safety
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          25th anniversary article: MXenes: a new family of two-dimensional materials.

          Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Management of acute organophosphorus pesticide poisoning

            Summary Organophosphorus pesticide self-poisoning is an important clinical problem in rural regions of the developing world, and kills an estimated 200 000 people every year. Unintentional poisoning kills far fewer people but is a problem in places where highly toxic organophosphorus pesticides are available. Medical management is difficult, with case fatality generally more than 15%. We describe the limited evidence that can guide therapy and the factors that should be considered when designing further clinical studies. 50 years after first use, we still do not know how the core treatments—atropine, oximes, and diazepam—should best be given. Important constraints in the collection of useful data have included the late recognition of great variability in activity and action of the individual pesticides, and the care needed cholinesterase assays for results to be comparable between studies. However, consensus suggests that early resuscitation with atropine, oxygen, respiratory support, and fluids is needed to improve oxygen delivery to tissues. The role of oximes is not completely clear; they might benefit only patients poisoned by specific pesticides or patients with moderate poisoning. Small studies suggest benefit from new treatments such as magnesium sulphate, but much larger trials are needed. Gastric lavage could have a role but should only be undertaken once the patient is stable. Randomised controlled trials are underway in rural Asia to assess the effectiveness of these therapies. However, some organophosphorus pesticides might prove very difficult to treat with current therapies, such that bans on particular pesticides could be the only method to substantially reduce the case fatality after poisoning. Improved medical management of organophosphorus poisoning should result in a reduction in worldwide deaths from suicide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment

              Organochlorine (OC) pesticides are synthetic pesticides widely used all over the world. They belong to the group of chlorinated hydrocarbon derivatives, which have vast application in the chemical industry and in agriculture. These compounds are known for their high toxicity, slow degradation and bioaccumulation. Even though many of the compounds which belong to OC were banned in developed countries, the use of these agents has been rising. This concerns particularly abuse of these chemicals which is in practice across the continents. Though pesticides have been developed with the concept of target organism toxicity, often non-target species are affected badly by their application. The purpose of this review is to list the major classes of pesticides, to understand organochlorine pesticides based on their activity and persistence, and also to understand their biochemical toxicity.
                Bookmark

                Author and article information

                Journal
                Ecotoxicology and Environmental Safety
                Ecotoxicology and Environmental Safety
                Elsevier BV
                01476513
                January 2021
                January 2021
                : 207
                : 111483
                Article
                10.1016/j.ecoenv.2020.111483
                33120277
                97530eb3-4cd0-4bed-80fa-459259b884dc
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article