2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Resistance of Major Bacterial Pathogens from Dairy Cows with High Somatic Cell Count and Clinical Mastitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Mastitis is the most prevalent disease of dairy cattle that causes significant economic losses. Different agents cause mastitis which leads to increased somatic cell count (SCC) and low milk quality. Treating mastitis with antimicrobials is essential to reduce SCC and improve milk quality. Excessive use or misuse of antimicrobials in dairy farms leads to the development of antimicrobial resistant bacteria. The objectives of this study were (1) to isolate and identify the causative agent of mastitis and (2) determine antimicrobial resistance profiles of bacterial isolates. A total of 174 quarter milk samples from 151 cows with high SCC and clinical mastitis from 34 dairy farms in Tennessee, Kentucky, and Mississippi were collected. Bacterial causative agents were determined by bacteriological and biochemical tests. Antimicrobial resistance of bacterial isolates against 10 commonly used antimicrobials was tested. A total of 193 bacteria consisting of six bacterial species, which include Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae were isolated. Staphylococcus aureus was the predominant isolate. The proportion of resistant isolates was relatively higher in Gram-negatives than Gram-positives. Continuous antimicrobial resistance testing and identification of reservoirs of resistance traits in dairy farms are essential to implement proper mitigation measures.

          Abstract

          Mastitis is the most prevalent and economically important disease caused by different etiological agents, which leads to increased somatic cell count (SCC) and low milk quality. Treating mastitis cases with antimicrobials is essential to reduce SCC and improve milk quality. Non-prudent use of antimicrobials in dairy farms increased the development of antimicrobial resistant bacteria. This study’s objectives were (1) to isolate and identify etiological agents of mastitis and (2) to determine antimicrobial resistance profiles of bacterial isolates. A total of 174 quarter milk samples from 151 cows with high SCC and clinical mastitis from 34 dairy farms in Tennessee, Kentucky, and Mississippi were collected. Bacterial causative agents were determined by bacteriological and biochemical tests. The antimicrobial resistance of bacterial isolates against 10 commonly used antimicrobials was tested. A total of 193 bacteria consisting of six bacterial species, which include Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae were isolated. Staphylococcus aureus was the predominant isolate followed by Strep. spp., E. coli, and Klebsiella spp. Results of this study showed that Gram-negatives ( E. coli and Klebsiella spp.) were more resistant than Gram-positives ( Staph. aureus and Streptococcus spp.). Continuous antimicrobial resistance testing and identification of reservoirs of resistance traits in dairy farms are essential to implement proper mitigation measures.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Outer membrane permeability and antibiotic resistance.

          To date most antibiotics are targeted at intracellular processes, and must be able to penetrate the bacterial cell envelope. In particular, the outer membrane of gram-negative bacteria provides a formidable barrier that must be overcome. There are essentially two pathways that antibiotics can take through the outer membrane: a lipid-mediated pathway for hydrophobic antibiotics, and general diffusion porins for hydrophilic antibiotics. The lipid and protein compositions of the outer membrane have a strong impact on the sensitivity of bacteria to many types of antibiotics, and drug resistance involving modifications of these macromolecules is common. This review will describe the molecular mechanisms for permeation of antibiotics through the outer membrane, and the strategies that bacteria have deployed to resist antibiotics by modifications of these pathways.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Agriculture and food animals as a source of antimicrobial-resistant bacteria

              One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                08 January 2021
                January 2021
                : 11
                : 1
                : 131
                Affiliations
                [1 ]Department of Animal Science, Hebert College of Agriculture, The University of Tennessee, Knoxville, TN 37996, USA; Reta.Abdi@ 123456liu.edu (R.D.A.); bgillesp@ 123456utk.edu (B.E.G.); ivey@ 123456utk.edu (S.I.); pighetti@ 123456utk.edu (G.M.P.); ralmaida@ 123456utk.edu (R.A.A.)
                [2 ]Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University Post, Roth Hall, Brookville, NY 11548, USA
                Author notes
                [* ]Correspondence: okerrode@ 123456utk.edu ; Tel.: +1-865-974-9740; Fax: +1-865-974-7297
                Author information
                https://orcid.org/0000-0002-5660-7720
                https://orcid.org/0000-0003-2108-8905
                Article
                animals-11-00131
                10.3390/ani11010131
                7827620
                33430135
                968cf115-3fb6-4e33-b0ac-e2bb01133f80
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 November 2020
                : 05 January 2021
                Categories
                Article

                antimicrobial resistance,dairy cow,mastitis pathogen,intramammary infection,environmental pathogen,contagious pathogen

                Comments

                Comment on this article