50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake.

          Author Summary

          Methionine is an essential amino acid that is highly toxic at elevated levels, and the liver is primarily responsible for buffering its concentration in circulation. Intracellularly, methionine is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. A specific feature of liver methionine metabolism is the existence of twin pathways for AdoMet synthesis and degradation. In this study, we analyzed the dependence of methionine metabolism on methionine concentration in liver cells using a combined experimental and theoretical approach. We find a sharp transition in rat hepatocyte metabolism from methionine conservation to a disposal mode with an increase in methionine concentration above its physiological range. Mathematical modeling reveals that this transition is afforded by an allosteric mechanism for switching between parallel metabolic pathways. This study demonstrates a novel mechanism of trigger behavior in biological systems by which the substrate for the metabolic network switches metabolic flux between parallel tracks for sustaining two different metabolic modes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome.

          Down syndrome is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677C-->T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. The present study was undertaken with a larger sample size to determine whether the MTHFR 677C-->T polymorphism was associated with increased risk of having a child with Down syndrome. Methionine synthase reductase (MTRR) is another enzyme essential for normal folate metabolism. A common polymorphism in this gene was recently associated with increased risk of neural tube defects and might also contribute to increased risk for Down syndrome. The frequencies of the MTHFR 677C-->T and MTRR 66A-->G mutations were evaluated in DNA samples from 157 mothers of children with Down syndrome and 144 control mothers. Odds ratios were calculated for each genotype separately and for potential gene-gene interactions. The results are consistent with the preliminary observation that the MTHFR 677C-->T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 1.91 (95% confidence interval [CI] 1.19-3.05). In addition, the homozygous MTRR 66A-->G polymorphism was independently associated with a 2. 57-fold increase in estimated risk (95% CI 1.33-4.99). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than was the presence of either alone, with an odds ratio of 4.08 (95% CI 1.94-8.56). The two polymorphisms appear to act without a multiplicative interaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the neurogranin concentrated in spines in the induction of long-term potentiation.

            Synaptic plasticity in CA1 hippocampal neurons depends on Ca2+ elevation and the resulting activation of calmodulin-dependent enzymes. Induction of long-term depression (LTD) depends on calcineurin, whereas long-term potentiation (LTP) depends on Ca2+/calmodulin-dependent protein kinase II (CaMKII). The concentration of calmodulin in neurons is considerably less than the total concentration of the apocalmodulin-binding proteins neurogranin and GAP-43, resulting in a low level of free calmodulin in the resting state. Neurogranin is highly concentrated in dendritic spines. To elucidate the role of neurogranin in synaptic plasticity, we constructed a computational model with emphasis on the interaction of calmodulin with neurogranin, calcineurin, and CaMKII. The model shows how the Ca2+ transients that occur during LTD or LTP induction affect calmodulin and how the resulting activation of calcineurin and CaMKII affects AMPA receptor-mediated transmission. In the model, knockout of neurogranin strongly diminishes the LTP induced by a single 100 Hz, 1 s tetanus and slightly enhances LTD, in accord with experimental data. Our simulations show that exchange of calmodulin between a spine and its parent dendrite is limited. Therefore, inducing LTP with a short tetanus requires calmodulin stored in spines in the form of rapidly dissociating calmodulin-neurogranin complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acquired and inherited disorders of cobalamin and folate in children.

              Cobalamin deficiency in the newborn usually results from cobalamin deficiency in the mother. Megaloblastic anaemia, pancytopenia and failure to thrive can be present, accompanied by neurological deficits if the diagnosis is delayed. Most cases of spina bifida and other neural tube defects result from maternal folate and/or cobalamin insufficiency in the periconceptual period. Polymorphisms in a number of genes involved in folate and cobalamin metabolism exacerbate the risk. Inborn errors of cobalamin metabolism affect its absorption, (intrinsic factor deficiency, Imerslund-Gräsbeck syndrome) and transport (transcobalamin deficiency) as well as its intracellular metabolism affecting adenosylcobalamin synthesis (cblA and cblB), methionine synthase function (cblE and cblG) or both (cblC, cblD and cblF). Inborn errors of folate metabolism include congenital folate malabsorption, severe methylenetetrahydrofolate reductase deficiency and formiminotransferase deficiency. The identification of disease-causing mutations in specific genes has improved our ability to diagnose many of these conditions, both before and after birth.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2008
                May 2008
                2 May 2008
                : 4
                : 5
                : e1000076
                Affiliations
                [1 ]National Research Center for Hematology, RAMS, Moscow, Russia
                [2 ]Biological Chemistry Department, University of Michigan, Ann Arbor, Michigan, United States of America
                [3 ]Department of Physics, Moscow State University, Moscow, Russia
                [4 ]Center for Theoretical Problems of Physicochemical Pharmacology, RAS, Moscow, Russia
                Boston University, United States of America
                Author notes

                Conceived and designed the experiments: VMV FA. Performed the experiments: TK DK VAV MM. Analyzed the data: TK DK MM VMV RB FA. Wrote the paper: MM VMV RB FA.

                Article
                07-PLCB-RA-0516R3
                10.1371/journal.pcbi.1000076
                2346559
                18451990
                9675ebc6-a3fa-4a1f-af5f-6e03d47cc8d6
                Korendyaseva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 August 2007
                : 31 March 2008
                Page count
                Pages: 10
                Categories
                Research Article
                Biochemistry
                Biochemistry/Bioinformatics
                Biochemistry/Chemical Biology of the Cell
                Biochemistry/Theory and Simulation
                Computational Biology/Metabolic Networks

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article