62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural Impact of the E113Q Counterion Mutation on the Activation and Deactivation Pathways of the G Protein-coupled Receptor Rhodopsin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disruption of an interhelical salt bridge between the retinal protonated Schiff base linked to H7 and Glu113 on H3 is one of the decisive steps during activation of rhodopsin. Using previously established stabilization strategies, we engineered a stabilized E113Q counterion mutant that converted rhodopsin to a UV-absorbing photoreceptor with deprotonated Schiff base and allowed reconstitution into native-like lipid membranes. Fourier-transform infrared difference spectroscopy reveals a deprotonated Schiff base in the photoproducts of the mutant up to the active state Meta II, the absence of the classical pH-dependent Meta I/Meta II conformational equilibrium in favor of Meta II, and an anticipation of active state features under conditions that stabilize inactive photoproduct states in wildtype rhodopsin. Glu181 on extracellular loop 2, is found to be unable to maintain a counterion function to the Schiff base on the activation pathway of rhodopsin in the absence of the primary counterion, Glu113. The Schiff base becomes protonated in the transition to Meta III. This protonation is, however, not associated with a deactivation of the receptor, in contrast to wildtype rhodopsin. Glu181 is suggested to be the counterion in the Meta III state of the mutant and appears to be capable of stabilizing a protonated Schiff base in Meta III, but not of constraining the receptor in an inactive conformation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of rhodopsin: A G protein-coupled receptor.

          Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.

            A new high-resolution structure is reported for bovine rhodopsin, the visual pigment in rod photoreceptor cells. Substantial improvement of the resolution limit to 2.2 A has been achieved by new crystallization conditions, which also reduce significantly the probability of merohedral twinning in the crystals. The new structure completely resolves the polypeptide chain and provides further details of the chromophore binding site including the configuration about the C6-C7 single bond of the 11-cis-retinal Schiff base. Based on both an earlier structure and the new improved model of the protein, a theoretical study of the chromophore geometry has been carried out using combined quantum mechanics/force field molecular dynamics. The consistency between the experimental and calculated chromophore structures is found to be significantly improved for the 2.2 A model, including the angle of the negatively twisted 6-s-cis-bond. Importantly, the new crystal structure refinement reveals significant negative pre-twist of the C11-C12 double bond and this is also supported by the theoretical calculation although the latter converges to a smaller value. Bond alternation along the unsaturated chain is significant, but weaker in the calculated structure than the one obtained from the X-ray data. Other differences between the experimental and theoretical structures in the chromophore binding site are discussed with respect to the unique spectral properties and excited state reactivity of the chromophore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of bovine rhodopsin in a trigonal crystal form.

              We have determined the structure of bovine rhodopsin at 2.65 A resolution using untwinned native crystals in the space group P3(1), by molecular replacement from the 2.8 A model (1F88) solved in space group P4(1). The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11-cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all-trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.
                Bookmark

                Author and article information

                Journal
                J Mol Biol
                Journal of Molecular Biology
                Elsevier
                0022-2836
                1089-8638
                27 June 2008
                27 June 2008
                : 380
                : 1
                : 145-157
                Affiliations
                [1 ]Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
                [2 ]Arbeitsgruppe Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
                Author notes
                [†]

                J.S. and E.Z. contributed equally to this work.

                Article
                YJMBI60406
                10.1016/j.jmb.2008.04.055
                2726285
                18511075
                962dcc74-5c76-4088-a880-a88b3c9fcdd3
                © 2008 Elsevier Ltd.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 14 December 2007
                : 12 March 2008
                : 21 April 2008
                Categories
                Article

                Molecular biology
                visual pigment,h/d, hydrogen/deuterium,ddm, dodecyl maltoside,ec, extracellular loop,ftir, fourier-transform infrared,pc, phosphatidyl choline,membrane protein,sb, deprotonated schiff base,psb, protonated schiff base,signal transduction,hoop, hydrogen-out-of-plane,g protein-coupled receptor,h, transmembrane helix,gpcr, g protein-coupled receptor,infrared spectroscopy

                Comments

                Comment on this article