2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The potential regulatory role of BMP9 in inflammatory responses

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation is a protective response of the body to pathogens and injury. Hence, it is particularly important to explore the pathogenesis and key regulatory factors of inflammation. BMP9 is a unique member of the BMP family, which is widely known for its strong osteogenic potential and insensitivity to the inhibition of BMP3. Recently, several studies have reported an underlying pivotal link between BMP9 and inflammation. What is clear, though not well understood, is that BMP9 plays a role in inflammation in a carefully choreographed manner in different contexts. In this review, we have summarized current studies focusing on BMP9 and inflammation in various tissues and the latest advances in BMP9 expression, signal transduction, and crystal structure to better understand the relationship between BMP9 and inflammation. In addition, we also briefly summarized the inflammatory characteristics of some TGF-β superfamily members to provide better insights and ideas for the study of BMP9 and inflammation.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and cancer: advances and new agents.

          Tumour-promoting inflammation is considered one of the enabling characteristics of cancer development. Chronic inflammatory disease increases the risk of some cancers, and strong epidemiological evidence exists that NSAIDs, particularly aspirin, are powerful chemopreventive agents. Tumour microenvironments contain many different inflammatory cells and mediators; targeting these factors in genetic, transplantable and inducible murine models of cancer substantially reduces the development, growth and spread of disease. Thus, this complex network of inflammation offers targets for prevention and treatment of malignant disease. Much potential exists in this area for novel cancer prevention and treatment strategies, although clinical research to support targeting of cancer-related inflammation and innate immunity in patients with advanced-stage cancer remains in its infancy. Following the initial successes of immunotherapies that modulate the adaptive immune system, we assert that inflammation and innate immunity are important targets in patients with cancer on the basis of extensive preclinical and epidemiological data. The adaptive immune response is heavily dependent on innate immunity, therefore, inhibiting some of the tumour-promoting immunosuppressive actions of the innate immune system might enhance the potential of immunotherapies that activate a nascent antitumour response.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fibrosis--a common pathway to organ injury and failure.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Resolution of inflammation: a new therapeutic frontier.

              Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                21 September 2021
                November 2022
                21 September 2021
                : 9
                : 6
                : 1566-1578
                Affiliations
                [a ]State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
                [b ]Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
                Author notes
                []Corresponding author. dongzhesong@ 123456scu.edu.cn
                [∗∗ ]Corresponding author. dingminghuang@ 123456163.com
                Article
                S2352-3042(21)00108-2
                10.1016/j.gendis.2021.08.010
                9485205
                36157503
                95e49838-7cbc-406e-854f-d2d25650857f
                © 2021 Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 April 2021
                : 24 July 2021
                : 20 August 2021
                Categories
                Review Article

                bone morphogenetic protein 9 (bmp9),crystal structure,expression profile,inflammation,transforming growth factor-β (tgf-β)

                Comments

                Comment on this article