21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retroviral Integrations in Gene Therapy Trials

      review-article
      1 , 1 , 1 , 2 , *
      Molecular Therapy
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.

          Severe combined immunodeficiency-X1 (SCID-X1) is an X-linked inherited disorder characterized by an early block in T and natural killer (NK) lymphocyte differentiation. This block is caused by mutations of the gene encoding the gammac cytokine receptor subunit of interleukin-2, -4, -7, -9, and -15 receptors, which participates in the delivery of growth, survival, and differentiation signals to early lymphoid progenitors. After preclinical studies, a gene therapy trial for SCID-X1 was initiated, based on the use of complementary DNA containing a defective gammac Moloney retrovirus-derived vector and ex vivo infection of CD34+ cells. After a 10-month follow-up period, gammac transgene-expressing T and NK cells were detected in two patients. T, B, and NK cell counts and function, including antigen-specific responses, were comparable to those of age-matched controls. Thus, gene therapy was able to provide full correction of disease phenotype and, hence, clinical benefit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1.

            Gene transfer into hematopoietic stem cells has been used successfully for correcting lymphoid but not myeloid immunodeficiencies. Here we report on two adults who received gene therapy after nonmyeloablative bone marrow conditioning for the treatment of X-linked chronic granulomatous disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes resulting from mutations in gp91(phox). We detected substantial gene transfer in both individuals' neutrophils that lead to a large number of functionally corrected phagocytes and notable clinical improvement. Large-scale retroviral integration site-distribution analysis showed activating insertions in MDS1-EVI1, PRDM16 or SETBP1 that had influenced regulation of long-term hematopoiesis by expanding gene-corrected myelopoiesis three- to four-fold in both individuals. Although insertional influences have probably reinforced the therapeutic efficacy in this trial, our results suggest that gene therapy in combination with bone marrow conditioning can be successfully used to treat inherited diseases affecting the myeloid compartment such as CGD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment.

              All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1+c-kit+Flt3- HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin-Sca-1+c-kit+CD34+Flt3+ cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.
                Bookmark

                Author and article information

                Journal
                Mol Ther
                Mol. Ther
                Molecular Therapy
                Nature Publishing Group
                1525-0016
                1525-0024
                April 2012
                17 January 2012
                1 April 2012
                : 20
                : 4
                : 709-716
                Affiliations
                [1 ]simpleSan Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) , Milan, Italy
                [2 ]simpleUniversity of Rome Tor Vergata , Rome, Italy
                Author notes
                [* ]Clinical Research Coordinator, HSR-TIGET, Via Olgettina 58, 20132 Milano, Italy. E-mail: aiuti.alessandro@ 123456hsr.it
                Article
                mt2011289
                10.1038/mt.2011.289
                3321603
                22252453
                95b49f90-4ad5-4de6-9e5f-411dd6e0c7fc
                Copyright © 2012 The American Society of Gene & Cell Therapy

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 28 September 2011
                : 06 December 2011
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article