19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the immune system provides protection from cancer by means of immunosurveillance, which serves a major function in eliminating cancer cells, it may also lead to cancer immunoediting, molding tumor immunogenicity. Cancer cells exploit several molecular mechanisms to thwart immune-mediated death by disabling cellular components of the immune system associated with tumor recognition and rejection. Human leukocyte antigen (HLA) molecules are mandatory for the immune recognition and subsequent killing of neoplastic cells by the immune system, as tumor antigens must be presented in an HLA-restricted manner to be recognized by T-cell receptors. Impaired HLA-I expression prevents the activation of cytotoxic immune mechanisms, whereas impaired HLA-II expression affects the antigen-presenting capability of antigen presenting cells. Aberrant HLA-G expression by cancer cells favors immune escape by inhibiting the activities of virtually all immune cells. The development of cancer therapies based on T-cell activation must consider these HLA-associated immune evasion mechanisms, as alterations in their expression occur early and frequently in the majority of types of cancer, and have an adverse impact on the clinical response to immunotherapy. Herein, the concept of altered HLA expression as a mechanism exploited by tumors to escape immune control and induce an immunosuppressive environment is reviewed. A number of novel clinical immunotherapeutic approaches used for cancer treatment are also reviewed, and strategies for overcoming the limitations of these immunotherapeutic interventions are proposed.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

            The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytokine patterns in patients with cancer: a systematic review.

              Active, but dysfunctional, immune responses in patients with cancer have been studied in several tumour types, but owing to the heterogeneity of cancer theories of common reaction mechanisms seem to be obsolete. In this Review of published clinical studies of patients with cancer, expression and interplay of the following cytokines are examined: interleukin 2, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 18, tumour necrosis factor α (TNFα), transforming growth factor β (TGFβ), interferon-γ, HLA-DR, macrophage migration inhibitory factor (MIF), and C-X-C motif chemokine receptor 4 (CXCR4). Clinical data were analysed in a non-quantitative descriptive manner and interpreted with regard to experimentally established physiological cytokine interactions. The clinical cytokine pattern that emerged suggests that simultaneous immunostimulation and immunosuppression occur in patients with cancer, with increased concentrations of the cytokines MIF, TNFα, interleukin 6, interleukin 8, interleukin 10, interleukin 18, and TGFβ. This specific cytokine pattern seems to have a prognostic effect, since high interleukin 6 or interleukin 10 serum concentrations are associated with negative prognoses in independent cancer types. Although immunostimulatory cytokines are involved in local cancer-associated inflammation, cancer cells seem to be protected from immunological eradication by cytokine-mediated local immunosuppression and a resulting defect of the interleukin 12-interferon-γ-HLA-DR axis. Cytokines produced by tumours might have a pivotal role in this defect. A working hypothesis is that the cancer-specific and histology-independent uniform cytokine cascade is one of the manifestations of the underlying paraneoplastic systemic disease, and this hypothesis links the stage of cancer with both the functional status of the immune system and the patient's prognosis. Neutralisation of this cytokine pattern could offer novel and so far unexploited treatment approaches for cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                October 2017
                21 August 2017
                21 August 2017
                : 14
                : 4
                : 4415-4427
                Affiliations
                Cancer Biology Research Group, National Cancer Institute of Colombia, 111511 Bogotá, Colombia
                Author notes
                Correspondence to: Mrs. Josefa A. Rodríguez, Cancer Biology Research Group, National Cancer Institute of Colombia, 9-85 Avenue 1st, 111511, Bogotá, Colombia, E-mail: jrodriguezg@ 123456cancer.gov.co
                Article
                OL-0-0-6784
                10.3892/ol.2017.6784
                5649701
                29085437
                9570d4dd-9279-4b7d-ae13-f7342627569c
                Copyright: © Rodríguez et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 27 August 2016
                : 31 March 2017
                Categories
                Review

                Oncology & Radiotherapy
                immunosurveillance,tumor microenvironment,human leukocyte antigens,tumor immune escape,immunotherapy,immune checkpoints

                Comments

                Comment on this article