13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      THE IMPORTANCE OF ANTIMICROBIAL COMPOUNDS PRODUCED BY BENEFICIAL BACTERIA ON THE BIOCONTROL OF PHYTOPATHOGENS Translated title: Importancia de compuestos antimicrobianos producidos por bacterias benéficas en el biocontrol de fitopatógenos

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Bacteria produce antimicrobial compounds to compete for nutrients and space in a particular habitat. Antagonistic interactions can be evaluated by several methodologies including the double-layer agar and simultaneous inhibition assays. Among the well-known inhibitory substances produced by bacteria are the broad-spectrum antibiotics, organic acids, siderophores, antifungal, and bacteriocins. The most studied bacterial genera able to produce these inhibitory substances are Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia, and Burkholderia. Some beneficial bacteria can promote plant growth and degrade toxic compounds in the environment representing an attractive solution to diverse issues in agriculture and soil pollution, particularly in fields with damaged soils where pesticides and fertilizers have been indiscriminately used. Beneficial bacteria may increase plant health by inhibiting pathogenic microorganisms; some examples include Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens, and Burkholderia tropica. However, most studies showing the antagonistic potential of these bacteria have been performed in vitro, and just a few of them have been evaluated in association with plants. Several inhibitory substances involved in pathogen antagonism have not been elucidated yet; in fact, we know only 1 % of the bacterial diversity in a natural environment leading us to assume that many other inhibitory substances remain unexplored. In this review, we will describe the characteristics of some antimicrobial compounds produced by beneficial bacteria, the principal methodologies performed to evaluate their production, modes of action, and their importance for biotechnological purposes.

          Translated abstract

          RESUMEN Las bacterias producen compuestos antimicrobianos para competir por nutrientes y espacio en un hábitat particular. Las interacciones antagónicas pueden evaluarse mediante varias metodologías, incluido el agar de doble capa y los ensayos de inhibición simultánea. Las sustancias inhibidoras mejor conocidas producidas por bacterias incluyen antibióticos, ácidos orgánicos, sideróforos, antifúngicos y bacteriocinas. Entre los géneros bacterianos más estudiados que producen sustancias inhibidoras se incluyen Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia y Burkholderia. Algunas bacterias beneficiosas tienen la capacidad de promover el crecimiento de las plantas y degradar compuestos tóxicos en el ambiente, por lo que podrían incrementar el rendimiento de los cultivos y disminuir problemas de contaminación del suelo, especialmente donde los pesticidas y fertilizantes han sido utilizados indiscriminadamente. Algunas bacterias beneficiosas pueden aumentar la salud de las plantas al inhibir microorganismos patógenos, por ejemplo, Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens y Burkholderia tropica. Sin embargo, la mayoría de los estudios que muestran el potencial antagónico de estas bacterias se han realizado in vitro, y pocos de ellos se han evaluado en asociación con plantas. Varias sustancias inhibitorias implicadas en el antagonismo de los patógenos aún son desconocidas; de hecho, sabemos que solo se ha aislado el 1 % de la diversidad bacteriana en un ambiente natural, lo que sugiere que hay muchas otras sustancias inhibitorias que no han sido exploradas. En esta revisión describimos las características de algunos compuestos antimicrobianos producidos por bacterias beneficiosas, las principales metodologías usadas para evaluar su producción, modos de acción y su importancia para fines biotecnológicos.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

          Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review

            Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Research priorities for harnessing plant microbiomes in sustainable agriculture

              Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.
                Bookmark

                Author and article information

                Journal
                abc
                Acta Biológica Colombiana
                Acta biol.Colomb.
                Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología (Bogotá, Cundinamarca, Colombia )
                0120-548X
                April 2020
                : 25
                : 1
                : 140-154
                Affiliations
                [1] Puebla orgnameBenemérita Universidad Autónoma de Puebla orgdiv1Grupo de Ecología y Supervivencia de Microorganismos (GESM) Mexico
                [2] orgnameCONACYT-GESM México
                Article
                S0120-548X2020000100140 S0120-548X(20)02500100140
                10.15446/abc.v25n1.76867
                95256955-cb46-4d20-af1e-d24476b3e09f

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 16 December 2018
                : 29 April 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 117, Pages: 15
                Product

                SciELO Colombia

                Categories
                Review

                PGPR,inhibición,antibiótico,Antagonismo,inhibition,competition,antibiotic,competencia,Antagonism

                Comments

                Comment on this article