44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The language of proteins: NLP, machine learning & protein sequences

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural language processing (NLP) is a field of computer science concerned with automated text and language analysis. In recent years, following a series of breakthroughs in deep and machine learning, NLP methods have shown overwhelming progress. Here, we review the success, promise and pitfalls of applying NLP algorithms to the study of proteins. Proteins, which can be represented as strings of amino-acid letters, are a natural fit to many NLP methods. We explore the conceptual similarities and differences between proteins and language, and review a range of protein-related tasks amenable to machine learning. We present methods for encoding the information of proteins as text and analyzing it with NLP methods, reviewing classic concepts such as bag-of-words, k-mers/n-grams and text search, as well as modern techniques such as word embedding, contextualized embedding, deep learning and neural language models. In particular, we focus on recent innovations such as masked language modeling, self-supervised learning and attention-based models. Finally, we discuss trends and challenges in the intersection of NLP and protein research.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Protein Data Bank.

            The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ImageNet classification with deep convolutional neural networks

                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Struct Biotechnol J
                Comput Struct Biotechnol J
                Computational and Structural Biotechnology Journal
                Research Network of Computational and Structural Biotechnology
                2001-0370
                25 March 2021
                2021
                25 March 2021
                : 19
                : 1750-1758
                Affiliations
                [a ]Medtronic, Inc, Israel
                [b ]The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
                [c ]Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
                Author notes
                [* ]Corresponding author. nadav.brandes@ 123456mail.huji.ac.il
                Article
                S2001-0370(21)00094-5
                10.1016/j.csbj.2021.03.022
                8050421
                33897979
                94e105c6-6186-4b34-8aef-596273289449
                © 2021 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 January 2021
                : 19 March 2021
                : 19 March 2021
                Categories
                Review Article

                natural language processing,deep learning,language models,bert,bag of words,tokenization,word embedding,contextualized embedding,transformer,artificial neural networks,word2vec,bioinformatics

                Comments

                Comment on this article