5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition

      review-article
      , , *
      EBioMedicine
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KRAS is the most frequent oncogene in non-small cell lung cancer (NSCLC), a molecular subset characterized by historical disappointments in targeted treatment approaches such as farnesyl transferase inhibition, downstream MEK inhibition, and synthetic lethality screens. Unlike other important mutational subtypes of NSCLC, preclinical work supports the hypothesis that KRAS mutations may be vulnerable to immunotherapy approaches, an efficacy associated in particular with TP53 co-mutation. In this review we detail reasons for previous failures in KRAS-mutant NSCLC, evidence to suggest that KRAS mutation is a genetic marker of benefit from immune checkpoint inhibition, and emerging direct inhibitors of K-Ras which will soon be combined with immunotherapy during clinical development. With signs of real progress in this subgroup of unmet need, we anticipate that KRAS mutant NSCLC will be the most important molecular subset of cancer to evaluate the combination of small molecules and immune checkpoint inhibitors (CPI).

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene.

          Oncogenic mutations in the small GTPase Ras are highly prevalent in cancer, but an understanding of the vulnerabilities of these cancers is lacking. We undertook a genome-wide RNAi screen to identify synthetic lethal interactions with the KRAS oncogene. We discovered a diverse set of proteins whose depletion selectively impaired the viability of Ras mutant cells. Among these we observed a strong enrichment for genes with mitotic functions. We describe a pathway involving the mitotic kinase PLK1, the anaphase-promoting complex/cyclosome, and the proteasome that, when inhibited, results in prometaphase accumulation and the subsequent death of Ras mutant cells. Gene expression analysis indicates that reduced expression of genes in this pathway correlates with increased survival of patients bearing tumors with a Ras transcriptional signature. Our results suggest a previously underappreciated role for Ras in mitotic progression and demonstrate a pharmacologically tractable pathway for the potential treatment of cancers harboring Ras mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models.

            KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited, cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential therapeutic approach for KRAS mutant cancers. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma.

              We have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues. More importantly, targeting Cdk4 alleles in advanced tumors detectable by computed tomography scanning also induces senescence and prevents tumor progression. These observations suggest that robust and selective pharmacological inhibition of Cdk4 may provide therapeutic benefit for NSCLC patients carrying K-RAS oncogenes. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                07 March 2019
                March 2019
                07 March 2019
                : 41
                : 711-716
                Affiliations
                University of Manchester, United Kingdom
                Author notes
                [* ]Corresponding author. colin.lindsay@ 123456manchester.ac.uk
                Article
                S2352-3964(19)30128-8
                10.1016/j.ebiom.2019.02.049
                6444074
                30852159
                9438732a-df61-4c4d-8c78-77c5672d7db7
                © 2019 The Authors. Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 December 2018
                : 19 February 2019
                : 21 February 2019
                Categories
                Research paper

                Comments

                Comment on this article