4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The lncRNA PVT1/miR-590-5p/FSTL1 axis modulates the proliferation and migration of airway smooth muscle cells in asthma

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels

          Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals. In this review, we summarize the functions and mechanisms of lncRNAs in plants, humans, and animals at different regulatory levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Asthma transition from childhood into adulthood.

            Asthma is the most prevalent chronic respiratory disease both in children and adults and resembles a complex syndrome rather than a single disease. Different methods have been developed to better characterise distinct asthma phenotypes in childhood and adulthood. In studies of adults, most phenotyping relies on biomaterials from the lower airways; however, this information is missing in paediatric studies because of restricted accessibility. Few patients show symptoms throughout childhood, adolescence, and adulthood. Risk factors for this might be genetics, family history of asthma and atopy, infections early in life, allergic diseases, and lung function deficits. In turn, a large proportion of children with asthma lose their symptoms during school age and adolescence. This improved prognosis, which might also reflect a better treatment response, is associated with being male and with milder and less allergic disease. Importantly, whether clinical remission of symptoms equals the disappearance of underlying pathology is unknown. In fact, airway hyper-responsiveness and airway inflammation might remain despite the absence of overt symptoms. Additionally, a new-onset of asthma symptoms is apparent in adulthood, especially in women and in the case of impaired lung function. However, many patients do not remember childhood symptoms, which might reflect relapse rather than true initiation. Both relapse and adult-onset of asthma symptoms have been associated with allergic disease and sensitisation in addition to airway hyper-responsiveness. Thus, asthma symptoms beginning in adults might have originated in childhood. Equivocally, persistence into, relapse, and new-onset of symptoms in adulthood have all been related to active smoking. However, underlying mechanisms for the associations remain unclear, and future asthma research should therefore integrate standardised molecular approaches in identical ways in both paediatric and adult populations and in longitudinal studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle

              Background The mechanism underlying nonsevere and severe asthma remains unclear, although it is commonly associated with increased airway smooth muscle (ASM) mass. Long noncoding RNAs (lncRNAs) are known to be important in regulating healthy primary airway smooth muscle cells (ASMCs), whereas changed expression has been observed in CD8 T cells from patients with severe asthma. Methods Primary ASMCs were isolated from healthy subjects (n = 9) and patients classified as having nonsevere (n = 9) or severe (n = 9) asthma. ASMCs were exposed to dexamethasone and FCS. mRNA and lncRNA expression was measured by using a microarray and quantitative real-time PCR. Bioinformatic analysis was used to examine relevant biological pathways. Finally, the lncRNA plasmacytoma variant translocation 1 (PVT1) was inhibited by transfection of primary ASMCs with small interfering RNAs, and the effect on ASMC phenotype was examined. Results The mRNA expression profile was significantly different between patient groups after exposure to dexamethasone and FCS, and these were associated with biological pathways that might be relevant to the pathogenesis of asthma, including cellular proliferation and pathways associated with glucocorticoid activity. We also observed a significant change in lncRNA expression, yet the expression of only one lncRNA (PVT1) is decreased in patients with corticosteroid-sensitive nonsevere asthma and increased in patients with corticosteroid-insensitive severe asthma. Subsequent targeting studies demonstrated the importance of this lncRNA in controlling both proliferation and IL-6 release in ASMCs from patients with severe asthma. Conclusions lncRNAs are associated with the aberrant phenotype observed in ASMCs from asthmatic patients. Targeting PVT1 might be effective in reducing airway remodeling in asthmatic patients.
                Bookmark

                Author and article information

                Journal
                Autoimmunity
                Autoimmunity
                Informa UK Limited
                0891-6934
                1607-842X
                April 03 2021
                April 07 2021
                April 03 2021
                : 54
                : 3
                : 138-147
                Affiliations
                [1 ]Department of Pediatrics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, P.R. China
                Article
                10.1080/08916934.2021.1897977
                33825599
                942e0563-36c4-4404-b7f5-855e30649420
                © 2021
                History

                Comments

                Comment on this article