84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phthalate Diesters and Their Metabolites in Human Breast Milk, Blood or Serum, and Urine as Biomarkers of Exposure in Vulnerable Populations

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phthalates may pose a risk for perinatal developmental effects. An important question relates to the choice of suitable biological matrices for assessing exposure during this period.

          Objectives

          This study was designed to measure the concentrations of phthalate diesters or their metabolites in breast milk, blood or serum, and urine and to evaluate their suitability for assessing perinatal exposure to phthalates.

          Methods

          In 2001, 2–3 weeks after delivery, 42 Swedish primipara provided breast milk, blood, and urine samples at home. Special care was taken to minimize contamination with phthalates (e.g., use of a special breast milk pump, heat treatment of glassware and needles, addition of phosphoric acid).

          Results

          Phthalate diesters and metabolites in milk and blood or serum, if detected, were present at concentrations close to the limit of detection. By contrast, most phthalate metabolites were detectable in urine at concentrations comparable to those from the general population in the United States and in Germany. No correlations existed between urine concentrations and those found in milk or blood/serum for single phthalate metabolites. Our data are at odds with a previous study documenting frequent detection and comparatively high concentrations of phthalate metabolites in Finnish and Danish mothers’ milk.

          Conclusions

          Concentrations of phthalate metabolites in urine are more informative than those in milk or serum. Furthermore, collection of milk or blood may be associated with discomfort and potential technical problems such as contamination (unless oxidative metabolites are measured). Although urine is a suitable matrix for health-related phthalate monitoring, urinary concentrations in nursing mothers cannot be used to estimate exposure to phthalates through milk ingestion by breast-fed infants.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

          We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human exposure to phthalates via consumer products.

            Phthalate exposures in the general population and in subpopulations are ubiquitous and widely variable. Many consumer products contain specific members of this family of chemicals, including building materials, household furnishings, clothing, cosmetics, pharmaceuticals, nutritional supplements, medical devices, dentures, children's toys, glow sticks, modelling clay, food packaging, automobiles, lubricants, waxes, cleaning materials and insecticides. Consumer products containing phthalates can result in human exposures through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Historically, the diet has been considered the major source of phthalate exposure in the general population, but all sources, pathways, and their relative contributions to human exposures are not well understood. Medical devices containing di-(2-ethylhexyl) phthalate are a source of significant exposure in a susceptible subpopulation of individuals. Cosmetics, personal care products, pharmaceuticals, nutritional supplements, herbal remedies and insecticides, may result in significant but poorly quantified human exposures to dibutyl phthalate, diethyl phthalate, or dimethyl phthalate. Oven baking of polymer clays may cause short-term, high-level inhalation exposures to higher molecular weight phthalates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?

              Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                March 2008
                21 December 2007
                : 116
                : 3
                : 334-339
                Affiliations
                [1 ] Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
                [2 ] Section of Occupational and Environmental Medicine, University Hospital of Lund, Sweden
                [3 ] IVL Swedish Environmental Research Institute Ltd., Stockholm, Sweden
                [4 ] Division of Laboratory Sciences, National Centre for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
                [5 ] Department of Applied Environmental Sciences, Stockholm University, Stockholm, Sweden
                [6 ] Swedish Environmental Protection Agency, Stockholm, Sweden
                Author notes
                Address correspondence to J. Högberg, Karolinska Institutet, Nobels Väg 13, Stockholm, Sweden. Telephone: 46852487503. Fax: 468343849. E-mail: johan.hogberg@ 123456ki.se

                The authors declare they have no competing financial interests.

                Article
                ehp0116-000334
                10.1289/ehp.10788
                2265037
                18335100
                9426ce7a-c3a9-4716-ae1e-cd2172ce3e8f
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 22 August 2007
                : 21 December 2007
                Categories
                Research

                Public health
                phthalates,metabolites,biomonitoring,perinatal,breast milk,urine,blood
                Public health
                phthalates, metabolites, biomonitoring, perinatal, breast milk, urine, blood

                Comments

                Comment on this article