32
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Understanding the cryptic nature of Lassa fever in West Africa

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d7257095e131">Lassa fever (LF) is increasingly recognized by global health institutions as an important rodent-borne disease with severe impacts on some of West Africa’s poorest communities. However, our knowledge of LF ecology, epidemiology and distribution is limited, which presents barriers to both short-term disease forecasting and prediction of long-term impacts of environmental change on Lassa virus (LASV) zoonotic transmission dynamics. Here, we synthesize current knowledge to show that extrapolations from past research have produced an incomplete picture of the incidence and distribution of LF, with negative consequences for policy planning, medical treatment and management interventions. Although the recent increase in LF case reports is likely due to improved surveillance, recent studies suggest that future socio-ecological changes in West Africa may drive increases in LF burden. Future research should focus on the geographical distribution and disease burden of LF, in order to improve its integration into public policy and disease control strategies. </p>

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence

          Anthropogenic land use changes drive a range of infectious disease outbreaks and emergence events and modify the transmission of endemic infections. These drivers include agricultural encroachment, deforestation, road construction, dam building, irrigation, wetland modification, mining, the concentration or expansion of urban environments, coastal zone degradation, and other activities. These changes in turn cause a cascade of factors that exacerbate infectious disease emergence, such as forest fragmentation, disease introduction, pollution, poverty, and human migration. The Working Group on Land Use Change and Disease Emergence grew out of a special colloquium that convened international experts in infectious diseases, ecology, and environmental health to assess the current state of knowledge and to develop recommendations for addressing these environmental health challenges. The group established a systems model approach and priority lists of infectious diseases affected by ecologic degradation. Policy-relevant levels of the model include specific health risk factors, landscape or habitat change, and institutional (economic and behavioral) levels. The group recommended creating Centers of Excellence in Ecology and Health Research and Training, based at regional universities and/or research institutes with close links to the surrounding communities. The centers’ objectives would be 3-fold: a) to provide information to local communities about the links between environmental change and public health; b) to facilitate fully interdisciplinary research from a variety of natural, social, and health sciences and train professionals who can conduct interdisciplinary research; and c) to engage in science-based communication and assessment for policy making toward sustainable health and ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lassa fever. Effective therapy with ribavirin.

            In a study of Lassa fever in Sierra Leone, West Africa, we identified two variables associated with a high risk of death, and we evaluated the efficacy of ribavirin and Lassa virus-convalescent plasma for the treatment of Lassa fever. A serum aspartate aminotransferase level greater than or equal to 150 IU per liter at the time of hospital admission was associated with a case-fatality rate of 55 percent (33 of 60). Patients with the same risk factor who were treated for 10 days with intravenous ribavirin, begun within the first 6 days after the onset of fever, had a case-fatality rate of 5 percent (1 of 20) (P = 0.0002 by Fisher's exact test). Patients whose treatment began seven or more days after the onset of fever had a case-fatality rate of 26 percent (11 of 43) (P = 0.01). Viremia with levels greater than or equal to 10(3.6) TCID50 per milliliter on admission was associated with a case-fatality rate of 76 percent (35 of 46). Patients with this risk factor who were treated with intravenous ribavirin within the first six days after onset of fever had a case-fatality rate of 9 percent (1 of 11) (P = 0.006), whereas those treated after seven days or more of illness had a fatality rate of 47 percent (9 of 19) (P = 0.035). Oral ribavirin was also effective in patients at high risk of death. Lassa-convalescent plasma did not significantly reduce mortality in any of the high-risk groups. We conclude that ribavirin is effective in the treatment of Lassa fever and that it should be used at any point in the illness, as well as for postexposure prophylaxis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of the viral hemorrhagic fevers.

              Four families of enveloped RNA viruses, filoviruses, flaviviruses, arenaviruses, and bunyaviruses, cause hemorrhagic fevers. These viruses are maintained in specific natural cycles involving nonhuman primates, bats, rodents, domestic ruminants, humans, mosquitoes, and ticks. Vascular instability varies from mild to fatal shock, and hemorrhage ranges from none to life threatening. The pathogenic mechanisms are extremely diverse and include deficiency of hepatic synthesis of coagulation factors owing to hepatocellular necrosis, cytokine storm, increased permeability by vascular endothelial growth factor, complement activation, and disseminated intravascular coagulation in one or more hemorrhagic fevers. The severity of disease caused by these agents varies tremendously; there are extremely high fatality rates in Ebola and Marburg hemorrhagic fevers, and asymptomatic infection predominates in yellow fever and dengue viral infections. Although ineffective immunity and high viral loads are characteristic of several viral hemorrhagic fevers, severe plasma leakage occurs at the time of viral clearance and defervescence in dengue hemorrhagic fever.
                Bookmark

                Author and article information

                Contributors
                Journal
                Pathogens and Global Health
                Pathogens and Global Health
                Informa UK Limited
                2047-7724
                2047-7732
                August 18 2017
                September 06 2017
                August 18 2017
                : 111
                : 6
                : 276-288
                Affiliations
                [1 ] Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London , London, UK
                [2 ] Department of Global Community Health and Behavioral Sciences, Tulane University , New Orleans, LA, USA
                [3 ] Institute of Zoology, Zoological Society of London , London, UK
                Article
                10.1080/20477724.2017.1369643
                5694855
                28875769
                936025af-a68f-495b-8ee4-14f696cb01ad
                © 2017
                History

                Comments

                Comment on this article