6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease causing the development of a large range of cardiovascular (CV) complications. Lifestyle changes and pharmacological therapies only partially halt T2DM progression, and existing drugs are unable to completely suppress the increased CV risk of T2DM patients. Extracellular vesicles (EV)s are membrane-coated nanoparticles released by virtually all living cells and are emerging as novel mediators of T2DM and its CV complications. As a matter of fact, several preclinical models suggest a key involvement of EVs in the initiation and/or progression of insulin resistance, β-cell dysfunction, diabetic dyslipidaemia, atherosclerosis, and other T2DM complications. In addition, preliminary findings also suggest that EV-associated molecular cargo, and in particular the miRNA repertoire, may provide with useful diagnostic and/or prognostic information for the management of T2DM. Here, we review the latest findings showing that EV biology is altered during the entire trajectory of T2DM, i.e. from diagnosis to development of CV complications. We also critically highlight the potential of this emerging research field, by describing both preclinical and clinical observations, and the limitations that must be overcome to translate the preclinical findings into the development of EV-based nano-diagnostic and/or nano-therapeutic tools. Finally, we summarize how two lifestyle changes known to prevent or limit T2DM, i.e. diet and exercise, affect EV number and composition, with a focus on the possible role of EVs contained in food in shaping metabolic responses, a promising approach still in its infancy.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

          ABSTRACT The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs: genomics, biogenesis, mechanism, and function.

            MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

              Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2021
                1 January 2021
                : 11
                : 3
                : 1031-1045
                Affiliations
                [1 ]IRCCS MultiMedica, Milan, Italy.
                [2 ]Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.
                [3 ]Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
                [4 ]Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
                Author notes
                ✉ Corresponding authors: Francesco Prattichizzo, PhD, IRCCS MultiMedica, PST, Via Fantoli 16/15, 20138, Milano, Italy. Email: francesco.prattichizzo@ 123456multimedica.it . Valeria De Nigris, MD, PhD, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Spain. Email: valeriadenigris@ 123456yahoo.it

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov11p1031
                10.7150/thno.51605
                7738884
                33391519
                91fe67f1-617d-43c9-bd18-f94b99e46171
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 6 August 2020
                : 31 August 2020
                Categories
                Review

                Molecular medicine
                extracellular vesicles,mirnas,type 2 diabetes,insulin resistance,β-cell dysfunction,low-grade inflammation,vascular complications,cardiovascular diseases,residual vascular risk,biomarkers,exosomes,microvesicles,diet,exercise,food

                Comments

                Comment on this article