7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          S100 proteins in cancer.

          In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-Level Clonal FGFR Amplification and Response to FGFR Inhibition in a Translational Clinical Trial.

            FGFR1 and FGFR2 are amplified in many tumor types, yet what determines response to FGFR inhibition in amplified cancers is unknown. In a translational clinical trial, we show that gastric cancers with high-level clonal FGFR2 amplification have a high response rate to the selective FGFR inhibitor AZD4547, whereas cancers with subclonal or low-level amplification did not respond. Using cell lines and patient-derived xenograft models, we show that high-level FGFR2 amplification initiates a distinct oncogene addiction phenotype, characterized by FGFR2-mediated transactivation of alternative receptor kinases, bringing PI3K/mTOR signaling under FGFR control. Signaling in low-level FGFR1-amplified cancers is more restricted to MAPK signaling, limiting sensitivity to FGFR inhibition. Finally, we show that circulating tumor DNA screening can identify high-level clonally amplified cancers. Our data provide a mechanistic understanding of the distinct pattern of oncogene addiction seen in highly amplified cancers and demonstrate the importance of clonality in predicting response to targeted therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel

              Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Nature
                1078-8956
                1546-170X
                September 25 2017
                September 25 2017
                :
                :
                Article
                10.1038/nm.4405
                28967919
                90028814-a11a-4593-8c5f-a96d2c86af0b
                © 2017
                History

                Comments

                Comment on this article