45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a Δ recA mutant: Δ recFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, Δ uvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of Δ uvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.

          Author Summary

          Deinococcus radiodurans bacterium is among the best-known organisms found to resist extremely high exposures to desiccation and ionizing radiation, both causing extensive DNA double-strand breaks. Because a single unrepaired DNA double-strand break is usually lethal, DNA double-strand breaks are considered as the most severe form of genomic damage. The extreme radioresistance of D. radiodurans is linked to its ability to reconstruct a functional genome from hundreds of chromosomal fragments. Genome reconstitution occurs through a two step process: (i) an extended synthesis-dependent strand-annealing process (ESDSA) that assembles genomic fragments in long linear intermediates that are then (ii) processed through recombination to generate circular chromosomes. Here, we demonstrate the essential role of key components of the D. radiodurans RecF pathway in ESDSA. We show that (i) inactivation of only one exonuclease (RecJ) results in cell lethality; (ii) cells devoid of RecF, RecO, or RecR display greatly impaired growth; (iii) RecF, RecO, or RecR proteins are essential for radioresistance through ESDSA; and (iv) UvrD helicase has an unexpected crucial function in DNA double-strand-break repair through ESDSA.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The importance of repairing stalled replication forks.

          The bacterial SOS response to unusual levels of DNA damage has been recognized and studied for several decades. Pathways for re-establishing inactivated replication forks under normal growth conditions have received far less attention. In bacteria growing aerobically in the absence of SOS-inducing conditions, many replication forks encounter DNA damage, leading to inactivation. The pathways for fork reactivation involve the homologous recombination systems, are nonmutagenic, and integrate almost every aspect of DNA metabolism. On a frequency-of-use basis, these pathways represent the main function of bacterial DNA recombination systems, as well as the main function of a number of other enzymatic systems that are associated with replication and site-specific recombination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Initiation of genetic recombination and recombination-dependent replication.

            Recombination initiates at double-stranded DNA breaks and at single-stranded DNA gaps. These DNA strand discontinuities can arise from DNA-damaging agents and from normal DNA replication when the DNA polymerase encounters an imperfection in the DNA template or another protein. The machinery of homologous recombination acts at these breaks and gaps to promote the events that result in gene recombination, as well as the reattachment of detached replication arms and the resumption of DNA replication. In Escherichia coli, these events require collaboration (RecA, RecBCD, RecFOR, RecQ, RuvABC and SSB proteins) and DNA replication (PriABC proteins and the DNA polymerases). The initial steps common to these recombination and recombination-dependent replication processes are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda.

              A Kuzminov (1999)
              Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2010
                January 2010
                15 January 2010
                : 6
                : 1
                : e1000774
                Affiliations
                [1]Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: EB PS SS. Performed the experiments: EB PS GC. Analyzed the data: EB PS SS. Wrote the paper: EB PS SS.

                Article
                09-PLGE-RA-1488R3
                10.1371/journal.pgen.1000774
                2806897
                20090937
                8f97d2e5-fdf1-418d-8b1f-57f0399325d6
                Bentchikou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 August 2009
                : 16 November 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology/Cellular Death and Stress Responses
                Genetics and Genomics/Gene Function
                Microbiology/Microbial Growth and Development
                Molecular Biology/DNA Repair
                Molecular Biology/DNA Replication
                Molecular Biology/Recombination

                Genetics
                Genetics

                Comments

                Comment on this article