81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To satisfy the mitotic checkpoint and drive chromosome congression, the Mps1 kinase lets go of kinetochores by phosphorylating itself in trans (see also related papers by Maciejowski et al. and Santaguida et al. in this issue).

          Abstract

          Mps1 is an essential component of the spindle assembly checkpoint. In this study, we describe a novel Mps1 inhibitor, AZ3146, and use it to probe the role of Mps1’s catalytic activity during mitosis. When Mps1 is inhibited before mitotic entry, subsequent recruitment of Mad1 and Mad2 to kinetochores is abolished. However, if Mps1 is inhibited after mitotic entry, the Mad1–C-Mad2 core complex remains kinetochore bound, but O-Mad2 is not recruited to the core. Although inhibiting Mps1 also interferes with chromosome alignment, we see no obvious effect on aurora B activity. In contrast, kinetochore recruitment of centromere protein E (CENP-E), a kinesin-related motor protein, is severely impaired. Strikingly, inhibition of Mps1 significantly increases its own abundance at kinetochores. Furthermore, we show that Mps1 can dimerize and transphosphorylate in cells. We propose a model whereby Mps1 transphosphorylation results in its release from kinetochores, thus facilitating recruitment of O-Mad2 and CENP-E and thereby simultaneously promoting checkpoint signaling and chromosome congression.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The spindle-assembly checkpoint in space and time.

          In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

            We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores

              The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                12 July 2010
                : 190
                : 1
                : 25-34
                Affiliations
                [1 ]Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
                [2 ]Department of Experimental Oncology, European Institute of Oncology, I-20139 Milan, Italy
                [3 ]Cancer and Infection Research Area, AstraZeneca, Cheshire SK10 4TG, England, UK
                Author notes
                Correspondence to Stephen S. Taylor: stephen.taylor@ 123456manchester.ac.uk

                L. Hewitt and A. Tighe contributed equally to this paper.

                A.M. White’s present address is Faculty of Human and Medical Sciences, University of Manchester, Manchester M13 9PT, England, UK.

                Article
                201002133
                10.1083/jcb.201002133
                2911659
                20624899
                8eb2efaf-7abe-4a34-bca8-4a9ae355fb57
                © 2010 Hewitt et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 24 February 2010
                : 5 June 2010
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article