8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and Functional Properties of Lactic Acid Bacteria Isolated From Wild Fruits and Flowers Present in Northern Argentina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactic acid bacteria (LAB) are capable of converting carbohydrate substrates into organic acids (mainly lactic acid) and producing a wide range of metabolites. Due to their interesting beneficial properties, LAB are widely used as starter cultures, as probiotics, and as microbial cell factories. Exploring LAB present in unknown niches may lead to the isolation of unique species or strains with relevant technological properties. Autochthonous rather than allochthonous starter cultures are preferred in the current industry of fermented food products, due to better adaptation and performance of autochthonous strains to the matrix they originate from. In this work, the lactic microbiota of eight different wild tropical types of fruits and four types of flowers were studied. The ability of the isolated strains to produce metabolites of interest to the food industry was evaluated. The presence of 21 species belonging to the genera Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc, and Weissella was evidenced by using culture-dependent techniques. The isolated LAB corresponded to 95 genotypically differentiated strains by applying rep-PCR and sequencing of the 16S rRNA gene; subsequently, representative strains of the different isolated species were studied for technological properties, such as fast growth rate and acidifying capacity; pectinolytic and cinnamoyl esterase activities, and absence of biogenic amine biosynthesis. Additionally, the strains' capacity to produce ethyl esters as well as mannitol was evaluated. The isolated fruit- and flower-origin LAB displayed functional properties that validate their potential use in the manufacture of fermented fruit-based products setting the background for the design of novel functional foods.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Lifestyles in transition: evolution and natural history of the genus Lactobacillus.

          Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploitation of vegetables and fruits through lactic acid fermentation.

            Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

              GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                21 May 2019
                2019
                : 10
                : 1091
                Affiliations
                [1] 1Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán , Tucumán, Argentina
                [2] 2Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium
                Author notes

                Edited by: Michael Gänzle, University of Alberta, Canada

                Reviewed by: Pasquale Filannino, University of Bari Aldo Moro, Italy; Jorgen Johannes Leisner, University of Copenhagen, Denmark

                *Correspondence: Fernanda Mozzi fmozzi@ 123456cerela.org.ar

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01091
                6536596
                31164879
                8ea32b34-ec79-498b-b149-a0aa9446601d
                Copyright © 2019 Ruiz Rodríguez, Mohamed, Bleckwedel, Medina, De Vuyst, Hebert and Mozzi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 February 2019
                : 30 April 2019
                Page count
                Figures: 5, Tables: 6, Equations: 0, References: 141, Pages: 26, Words: 20715
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lactic acid bacteria,fructophilic lactic acid bacteria,fructobacillus,tropical fruits,microbial diversity,functional properties,mannitol,esterases

                Comments

                Comment on this article