12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      lncRNA EZR-AS1 knockdown represses proliferation, migration and invasion of cSCC via the PI3K/AKT signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although long non-coding RNAs (lncRNAs) have been implicated in various human cancer types, the role of lncRNA ezrin antisense RNA 1 (EZR-AS1) in cutaneous squamous cell carcinoma (cSCC) remains unclear. The present study aimed to investigate the effect of lncRNAEZR-AS1 on cSCC and identify the underlying molecular mechanisms. EZR-AS1 expression was measured in cSCC tissue and cells detected using reverse transcription-quantitative PCR. Gain-of-function assays were performed in A431 cells, which have a relatively low expression of EZR-AS1, while loss-of-function assays were performed in SCC13 and SCL-1 colon cancer cells, which have a relatively high expression of EZR-AS1. Cell viability, proliferation, migration, invasion and apoptosis were assessed using MTT, plate cloning, wound healing, Transwell and flow cytometry assays, respectively. EZR-AS1 mRNA expression levels were significantly upregulated in cSCC tissues and cells compared with adjacent healthy tissues and HaCaT cells, respectively. Compared with the small interfering RNA (si)-negative control (NC) group, si-EZR-AS1 significantly inhibited SCC13 and SCL-1 cell proliferation, migration and invasion, but promoted cell apoptosis. By contrast, compared with the pc-NC group, EZR-AS1 overexpression significantly enhanced A431 cell proliferation, migration and invasion, but inhibited cell apoptosis. Moreover, focal adhesion kinase (FAK) was identified as a target of EZR-AS1, and EZR-AS1 knockdown significantly decreased FAK expression compared with the si-NC group. Moreover, EZR-AS1 knockdown significantly downregulated the protein expression levels of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT in cSCC cells compared with the si-NC group. The PI3K agonist 740Y-P significantly reversed si-EZR-AS1-mediated effects on SCC13 and SCL-1 cell proliferation, migration, invasion and apoptosis. In conclusion, the present study demonstrated that si-EZR-AS1 inhibited cSCC cell proliferation, migration and invasion, and promoted cell apoptosis, potentially via regulating the PI3K/AKT signaling pathway. Therefore, the present study provided novel insights into the diagnosis and treatment of cSCC.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-coding RNA networks in cancer

            Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies

              Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                January 2021
                23 November 2020
                23 November 2020
                : 23
                : 1
                : 76
                Affiliations
                [1 ]Department of Dermatology, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
                [2 ]Department of Oncology, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
                [3 ]Department of Dermatology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
                [4 ]Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
                Author notes
                Correspondence to: Professor Zhen Mu, Department of Dermatology, The Second Affiliated Hospital of Shandong First Medical University, 706 Taishan Street, Tai'an, Shandong 271000, P.R. China, E-mail: sdzbldsll@ 123456163.com
                Article
                MMR-0-0-11714
                10.3892/mmr.2020.11714
                7716411
                33236153
                8e20b2d3-a78d-4f0b-9be7-372f6dc9cb63
                Copyright: © Lu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 18 June 2020
                : 21 October 2020
                Categories
                Articles

                long non-coding rna,ezrin antisense rna 1,cutaneous squamous cell carcinoma,pi3k/akt

                Comments

                Comment on this article