4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.

          ABSTRACT

          Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either Δ fakA or Δ fakB1 Δ fakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Allelic replacement in Staphylococcus aureus with inducible counter-selection.

          A method for rapid selection of allelic replacement mutations in the chromosome of Staphylococcus aureus is described. Plasmid pKOR1, an Escherichia coli/S. aureus shuttle vector, permits rapid cloning via lambda recombination and ccdB selection. Plasmid transformation of staphylococci and growth at 43 degrees C, a non-permissive condition for pKOR1 replication, selects for homologous recombination and pKOR1 integration into the bacterial chromosome. Anhydrotetracycline-mediated induction of pKOR1-encoded secY antisense transcripts via the Pxyl/tetO promoter, a condition that is not compatible with staphylococcal growth, selects for chromosomal excision and loss of plasmid. Using this strategy, allelic replacements in S. aureus rocA were generated at frequencies that obviated the need for antibiotic marker selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery.

            The increase in drug-resistant pathogenic bacteria has created an urgent demand for new antibiotics. Among the more attractive targets for the development of new antibacterial compounds are the enzymes of fatty acid biosynthesis. Although a number of potent inhibitors of microbial fatty acid biosynthesis have been discovered, few of these are clinically useful drugs. Several of these fatty acid biosynthesis inhibitors have potential as lead compounds in the development of new antibacterials. This review encompasses the known inhibitors and prospective targets for new antibacterials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus.

              The bursa aurealis transposon has been used to create transposon insertion libraries of Bacillus anthracis and Staphylococcus aureus. To provide a set of genetic tools to enhance the utility of these libraries, we generated an allelic-exchange system that allows for the replacement of the transposon with useful genetic markers and fluorescent reporter genes. These tools were tested in the Nebraska Transposon Mutant Library (NTML), containing defined transposon insertions in 1,952 nonessential S. aureus genes. First, we generated a plasmid that allows researchers to replace the genes encoding green fluorescent protein (GFP) and erythromycin resistance in the transposon with a noncoding DNA fragment, leaving a markerless mutation within the chromosome. Second, we produced allelic-exchange plasmids to replace the transposon with alternate antibiotic resistance cassettes encoding tetracycline, kanamycin, and spectinomycin resistance, allowing for the simultaneous selection of multiple chromosomal mutations. Third, we generated a series of fluorescent reporter constructs that, after allelic exchange, generate transcriptional reporters encoding codon-optimized enhanced cyan fluorescent protein (ECFP), enhanced yellow fluorescent protein (EYFP), DsRed.T3(DNT), and eqFP650, as well as superfolder green fluorescent protein (sGFP). Overall, combining the NTML with this allelic-exchange system provides an unparalleled resource for the study of S. aureus.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                mBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                19 May 2020
                May-Jun 2020
                : 11
                : 3
                : e00920-20
                Affiliations
                [a ]Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
                University of Pittsburgh School of Medicine
                Author notes
                Address correspondence to Charles O. Rock, charles.rock@ 123456stjude.org .
                Author information
                https://orcid.org/0000-0001-8648-4189
                Article
                mBio00920-20
                10.1128/mBio.00920-20
                7240157
                32430471
                8dbcf3d7-bf2d-4377-b43e-89acfc198f33
                Copyright © 2020 Frank et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 14 April 2020
                : 20 April 2020
                Page count
                supplementary-material: 4, Figures: 5, Tables: 0, Equations: 0, References: 50, Pages: 14, Words: 9270
                Funding
                Funded by: HHS | NIH | National Institute of General Medical Sciences (NIGMS), https://doi.org/10.13039/100000057;
                Award ID: GM034496
                Award Recipient :
                Categories
                Research Article
                Host-Microbe Biology
                Custom metadata
                May/June 2020

                Life sciences
                staphylococcus aureus,fatty acid,fatty acid kinase,fatty acid binding protein,phospholipid,virulence,fatty acid activation,host-pathogen interactions

                Comments

                Comment on this article